240 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			240 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * Author: Samyak Datta (datta[dot]samyak[at]gmail.com)
 | |
|  *
 | |
|  * A program to detect facial feature points using
 | |
|  * Haarcascade classifiers for face, eyes, nose and mouth
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "opencv2/objdetect/objdetect.hpp"
 | |
| #include "opencv2/highgui/highgui.hpp"
 | |
| #include "opencv2/imgproc/imgproc.hpp"
 | |
| 
 | |
| #include <iostream>
 | |
| #include <cstdio>
 | |
| #include <vector>
 | |
| #include <algorithm>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| 
 | |
| // Functions to parse command-line arguments
 | |
| static string getCommandOption(const vector<string>&, const string&);
 | |
| static void setCommandOptions(vector<string>&, int, char**);
 | |
| static bool doesCmdOptionExist(const vector<string>& , const string&);
 | |
| 
 | |
| // Functions for facial feature detection
 | |
| static void help();
 | |
| static void detectFaces(Mat&, vector<Rect_<int> >&, string);
 | |
| static void detectEyes(Mat&, vector<Rect_<int> >&, string);
 | |
| static void detectNose(Mat&, vector<Rect_<int> >&, string);
 | |
| static void detectMouth(Mat&, vector<Rect_<int> >&, string);
 | |
| static void detectFacialFeaures(Mat&, const vector<Rect_<int> >, string, string, string);
 | |
| 
 | |
| string input_image_path;
 | |
| string face_cascade_path, eye_cascade_path, nose_cascade_path, mouth_cascade_path;
 | |
| 
 | |
| int main(int argc, char** argv)
 | |
| {
 | |
|     if(argc < 3)
 | |
|     {
 | |
|         help();
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     // Extract command-line options
 | |
|     vector<string> args;
 | |
|     setCommandOptions(args, argc, argv);
 | |
| 
 | |
|     input_image_path = argv[1];
 | |
|     face_cascade_path = argv[2];
 | |
|     eye_cascade_path = (doesCmdOptionExist(args, "-eyes")) ? getCommandOption(args, "-eyes") : "";
 | |
|     nose_cascade_path = (doesCmdOptionExist(args, "-nose")) ? getCommandOption(args, "-nose") : "";
 | |
|     mouth_cascade_path = (doesCmdOptionExist(args, "-mouth")) ? getCommandOption(args, "-mouth") : "";
 | |
| 
 | |
|     // Load image and cascade classifier files
 | |
|     Mat image;
 | |
|     image = imread(input_image_path);
 | |
| 
 | |
|     // Detect faces and facial features
 | |
|     vector<Rect_<int> > faces;
 | |
|     detectFaces(image, faces, face_cascade_path);
 | |
|     detectFacialFeaures(image, faces, eye_cascade_path, nose_cascade_path, mouth_cascade_path);
 | |
| 
 | |
|     imshow("Result", image);
 | |
| 
 | |
|     waitKey(0);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void setCommandOptions(vector<string>& args, int argc, char** argv)
 | |
| {
 | |
|     for(int i = 1; i < argc; ++i)
 | |
|     {
 | |
|         args.push_back(argv[i]);
 | |
|     }
 | |
|     return;
 | |
| }
 | |
| 
 | |
| string getCommandOption(const vector<string>& args, const string& opt)
 | |
| {
 | |
|     string answer;
 | |
|     vector<string>::const_iterator it = find(args.begin(), args.end(), opt);
 | |
|     if(it != args.end() && (++it != args.end()))
 | |
|         answer = *it;
 | |
|     return answer;
 | |
| }
 | |
| 
 | |
| bool doesCmdOptionExist(const vector<string>& args, const string& opt)
 | |
| {
 | |
|     vector<string>::const_iterator it = find(args.begin(), args.end(), opt);
 | |
|     return (it != args.end());
 | |
| }
 | |
| 
 | |
| static void help()
 | |
| {
 | |
|     cout << "\nThis file demonstrates facial feature points detection using Haarcascade classifiers.\n"
 | |
|         "The program detects a face and eyes, nose and mouth inside the face."
 | |
|         "The code has been tested on the Japanese Female Facial Expression (JAFFE) database and found"
 | |
|         "to give reasonably accurate results. \n";
 | |
| 
 | |
|     cout << "\nUSAGE: ./cpp-example-facial_features [IMAGE] [FACE_CASCADE] [OPTIONS]\n"
 | |
|         "IMAGE\n\tPath to the image of a face taken as input.\n"
 | |
|         "FACE_CASCSDE\n\t Path to a haarcascade classifier for face detection.\n"
 | |
|         "OPTIONS: \nThere are 3 options available which are described in detail. There must be a "
 | |
|         "space between the option and it's argument (All three options accept arguments).\n"
 | |
|         "\t-eyes : Specify the haarcascade classifier for eye detection.\n"
 | |
|         "\t-nose : Specify the haarcascade classifier for nose detection.\n"
 | |
|         "\t-mouth : Specify the haarcascade classifier for mouth detection.\n";
 | |
| 
 | |
| 
 | |
|     cout << "EXAMPLE:\n"
 | |
|         "(1) ./cpp-example-facial_features image.jpg face.xml -eyes eyes.xml -mouth mouth.xml\n"
 | |
|         "\tThis will detect the face, eyes and mouth in image.jpg.\n"
 | |
|         "(2) ./cpp-example-facial_features image.jpg face.xml -nose nose.xml\n"
 | |
|         "\tThis will detect the face and nose in image.jpg.\n"
 | |
|         "(3) ./cpp-example-facial_features image.jpg face.xml\n"
 | |
|         "\tThis will detect only the face in image.jpg.\n";
 | |
| 
 | |
|     cout << " \n\nThe classifiers for face and eyes can be downloaded from : "
 | |
|         " \nhttps://github.com/Itseez/opencv/tree/master/data/haarcascades";
 | |
| 
 | |
|     cout << "\n\nThe classifiers for nose and mouth can be downloaded from : "
 | |
|         " \nhttps://github.com/Itseez/opencv_contrib/tree/master/modules/face/data/cascades\n";
 | |
| }
 | |
| 
 | |
| static void detectFaces(Mat& img, vector<Rect_<int> >& faces, string cascade_path)
 | |
| {
 | |
|     CascadeClassifier face_cascade;
 | |
|     face_cascade.load(cascade_path);
 | |
| 
 | |
|     face_cascade.detectMultiScale(img, faces, 1.15, 3, 0|CASCADE_SCALE_IMAGE, Size(30, 30));
 | |
|     return;
 | |
| }
 | |
| 
 | |
| static void detectFacialFeaures(Mat& img, const vector<Rect_<int> > faces, string eye_cascade,
 | |
|         string nose_cascade, string mouth_cascade)
 | |
| {
 | |
|     for(unsigned int i = 0; i < faces.size(); ++i)
 | |
|     {
 | |
|         // Mark the bounding box enclosing the face
 | |
|         Rect face = faces[i];
 | |
|         rectangle(img, Point(face.x, face.y), Point(face.x+face.width, face.y+face.height),
 | |
|                 Scalar(255, 0, 0), 1, 4);
 | |
| 
 | |
|         // Eyes, nose and mouth will be detected inside the face (region of interest)
 | |
|         Mat ROI = img(Rect(face.x, face.y, face.width, face.height));
 | |
| 
 | |
|         // Check if all features (eyes, nose and mouth) are being detected
 | |
|         bool is_full_detection = false;
 | |
|         if( (!eye_cascade.empty()) && (!nose_cascade.empty()) && (!mouth_cascade.empty()) )
 | |
|             is_full_detection = true;
 | |
| 
 | |
|         // Detect eyes if classifier provided by the user
 | |
|         if(!eye_cascade.empty())
 | |
|         {
 | |
|             vector<Rect_<int> > eyes;
 | |
|             detectEyes(ROI, eyes, eye_cascade);
 | |
| 
 | |
|             // Mark points corresponding to the centre of the eyes
 | |
|             for(unsigned int j = 0; j < eyes.size(); ++j)
 | |
|             {
 | |
|                 Rect e = eyes[j];
 | |
|                 circle(ROI, Point(e.x+e.width/2, e.y+e.height/2), 3, Scalar(0, 255, 0), -1, 8);
 | |
|                 /* rectangle(ROI, Point(e.x, e.y), Point(e.x+e.width, e.y+e.height),
 | |
|                     Scalar(0, 255, 0), 1, 4); */
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Detect nose if classifier provided by the user
 | |
|         double nose_center_height = 0.0;
 | |
|         if(!nose_cascade.empty())
 | |
|         {
 | |
|             vector<Rect_<int> > nose;
 | |
|             detectNose(ROI, nose, nose_cascade);
 | |
| 
 | |
|             // Mark points corresponding to the centre (tip) of the nose
 | |
|             for(unsigned int j = 0; j < nose.size(); ++j)
 | |
|             {
 | |
|                 Rect n = nose[j];
 | |
|                 circle(ROI, Point(n.x+n.width/2, n.y+n.height/2), 3, Scalar(0, 255, 0), -1, 8);
 | |
|                 nose_center_height = (n.y + n.height/2);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Detect mouth if classifier provided by the user
 | |
|         double mouth_center_height = 0.0;
 | |
|         if(!mouth_cascade.empty())
 | |
|         {
 | |
|             vector<Rect_<int> > mouth;
 | |
|             detectMouth(ROI, mouth, mouth_cascade);
 | |
| 
 | |
|             for(unsigned int j = 0; j < mouth.size(); ++j)
 | |
|             {
 | |
|                 Rect m = mouth[j];
 | |
|                 mouth_center_height = (m.y + m.height/2);
 | |
| 
 | |
|                 // The mouth should lie below the nose
 | |
|                 if( (is_full_detection) && (mouth_center_height > nose_center_height) )
 | |
|                 {
 | |
|                     rectangle(ROI, Point(m.x, m.y), Point(m.x+m.width, m.y+m.height), Scalar(0, 255, 0), 1, 4);
 | |
|                 }
 | |
|                 else if( (is_full_detection) && (mouth_center_height <= nose_center_height) )
 | |
|                     continue;
 | |
|                 else
 | |
|                     rectangle(ROI, Point(m.x, m.y), Point(m.x+m.width, m.y+m.height), Scalar(0, 255, 0), 1, 4);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| }
 | |
| 
 | |
| static void detectEyes(Mat& img, vector<Rect_<int> >& eyes, string cascade_path)
 | |
| {
 | |
|     CascadeClassifier eyes_cascade;
 | |
|     eyes_cascade.load(cascade_path);
 | |
| 
 | |
|     eyes_cascade.detectMultiScale(img, eyes, 1.20, 5, 0|CASCADE_SCALE_IMAGE, Size(30, 30));
 | |
|     return;
 | |
| }
 | |
| 
 | |
| static void detectNose(Mat& img, vector<Rect_<int> >& nose, string cascade_path)
 | |
| {
 | |
|     CascadeClassifier nose_cascade;
 | |
|     nose_cascade.load(cascade_path);
 | |
| 
 | |
|     nose_cascade.detectMultiScale(img, nose, 1.20, 5, 0|CASCADE_SCALE_IMAGE, Size(30, 30));
 | |
|     return;
 | |
| }
 | |
| 
 | |
| static void detectMouth(Mat& img, vector<Rect_<int> >& mouth, string cascade_path)
 | |
| {
 | |
|     CascadeClassifier mouth_cascade;
 | |
|     mouth_cascade.load(cascade_path);
 | |
| 
 | |
|     mouth_cascade.detectMultiScale(img, mouth, 1.20, 5, 0|CASCADE_SCALE_IMAGE, Size(30, 30));
 | |
|     return;
 | |
| }
 | 
