248 lines
9.7 KiB
C++
248 lines
9.7 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef __OPENCV_GPUSTEREO_HPP__
|
|
#define __OPENCV_GPUSTEREO_HPP__
|
|
|
|
#ifndef __cplusplus
|
|
# error gpustereo.hpp header must be compiled as C++
|
|
#endif
|
|
|
|
#include "opencv2/core/gpu.hpp"
|
|
|
|
namespace cv { namespace gpu {
|
|
|
|
class CV_EXPORTS StereoBM_GPU
|
|
{
|
|
public:
|
|
enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 };
|
|
|
|
enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 };
|
|
|
|
//! the default constructor
|
|
StereoBM_GPU();
|
|
//! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8.
|
|
StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ);
|
|
|
|
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
|
|
//! Output disparity has CV_8U type.
|
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
//! Some heuristics that tries to estmate
|
|
// if current GPU will be faster than CPU in this algorithm.
|
|
// It queries current active device.
|
|
static bool checkIfGpuCallReasonable();
|
|
|
|
int preset;
|
|
int ndisp;
|
|
int winSize;
|
|
|
|
// If avergeTexThreshold == 0 => post procesing is disabled
|
|
// If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
|
|
// SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
|
|
// i.e. input left image is low textured.
|
|
float avergeTexThreshold;
|
|
|
|
private:
|
|
GpuMat minSSD, leBuf, riBuf;
|
|
};
|
|
|
|
// "Efficient Belief Propagation for Early Vision"
|
|
// P.Felzenszwalb
|
|
class CV_EXPORTS StereoBeliefPropagation
|
|
{
|
|
public:
|
|
enum { DEFAULT_NDISP = 64 };
|
|
enum { DEFAULT_ITERS = 5 };
|
|
enum { DEFAULT_LEVELS = 5 };
|
|
|
|
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);
|
|
|
|
//! the default constructor
|
|
explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP,
|
|
int iters = DEFAULT_ITERS,
|
|
int levels = DEFAULT_LEVELS,
|
|
int msg_type = CV_32F);
|
|
|
|
//! the full constructor taking the number of disparities, number of BP iterations on each level,
|
|
//! number of levels, truncation of data cost, data weight,
|
|
//! truncation of discontinuity cost and discontinuity single jump
|
|
//! DataTerm = data_weight * min(fabs(I2-I1), max_data_term)
|
|
//! DiscTerm = min(disc_single_jump * fabs(f1-f2), max_disc_term)
|
|
//! please see paper for more details
|
|
StereoBeliefPropagation(int ndisp, int iters, int levels,
|
|
float max_data_term, float data_weight,
|
|
float max_disc_term, float disc_single_jump,
|
|
int msg_type = CV_32F);
|
|
|
|
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
|
|
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
|
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
|
|
//! version for user specified data term
|
|
void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
int ndisp;
|
|
|
|
int iters;
|
|
int levels;
|
|
|
|
float max_data_term;
|
|
float data_weight;
|
|
float max_disc_term;
|
|
float disc_single_jump;
|
|
|
|
int msg_type;
|
|
private:
|
|
GpuMat u, d, l, r, u2, d2, l2, r2;
|
|
std::vector<GpuMat> datas;
|
|
GpuMat out;
|
|
};
|
|
|
|
// "A Constant-Space Belief Propagation Algorithm for Stereo Matching"
|
|
// Qingxiong Yang, Liang Wang, Narendra Ahuja
|
|
// http://vision.ai.uiuc.edu/~qyang6/
|
|
class CV_EXPORTS StereoConstantSpaceBP
|
|
{
|
|
public:
|
|
enum { DEFAULT_NDISP = 128 };
|
|
enum { DEFAULT_ITERS = 8 };
|
|
enum { DEFAULT_LEVELS = 4 };
|
|
enum { DEFAULT_NR_PLANE = 4 };
|
|
|
|
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane);
|
|
|
|
//! the default constructor
|
|
explicit StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP,
|
|
int iters = DEFAULT_ITERS,
|
|
int levels = DEFAULT_LEVELS,
|
|
int nr_plane = DEFAULT_NR_PLANE,
|
|
int msg_type = CV_32F);
|
|
|
|
//! the full constructor taking the number of disparities, number of BP iterations on each level,
|
|
//! number of levels, number of active disparity on the first level, truncation of data cost, data weight,
|
|
//! truncation of discontinuity cost, discontinuity single jump and minimum disparity threshold
|
|
StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane,
|
|
float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
|
|
int min_disp_th = 0,
|
|
int msg_type = CV_32F);
|
|
|
|
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
|
|
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
|
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());
|
|
|
|
int ndisp;
|
|
|
|
int iters;
|
|
int levels;
|
|
|
|
int nr_plane;
|
|
|
|
float max_data_term;
|
|
float data_weight;
|
|
float max_disc_term;
|
|
float disc_single_jump;
|
|
|
|
int min_disp_th;
|
|
|
|
int msg_type;
|
|
|
|
bool use_local_init_data_cost;
|
|
private:
|
|
GpuMat messages_buffers;
|
|
|
|
GpuMat temp;
|
|
GpuMat out;
|
|
};
|
|
|
|
// Disparity map refinement using joint bilateral filtering given a single color image.
|
|
// Qingxiong Yang, Liang Wang, Narendra Ahuja
|
|
// http://vision.ai.uiuc.edu/~qyang6/
|
|
class CV_EXPORTS DisparityBilateralFilter
|
|
{
|
|
public:
|
|
enum { DEFAULT_NDISP = 64 };
|
|
enum { DEFAULT_RADIUS = 3 };
|
|
enum { DEFAULT_ITERS = 1 };
|
|
|
|
//! the default constructor
|
|
explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS);
|
|
|
|
//! the full constructor taking the number of disparities, filter radius,
|
|
//! number of iterations, truncation of data continuity, truncation of disparity continuity
|
|
//! and filter range sigma
|
|
DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range);
|
|
|
|
//! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image.
|
|
//! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type.
|
|
void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream = Stream::Null());
|
|
|
|
private:
|
|
int ndisp;
|
|
int radius;
|
|
int iters;
|
|
|
|
float edge_threshold;
|
|
float max_disc_threshold;
|
|
float sigma_range;
|
|
|
|
GpuMat table_color;
|
|
GpuMat table_space;
|
|
};
|
|
|
|
//! Reprojects disparity image to 3D space.
|
|
//! Supports CV_8U and CV_16S types of input disparity.
|
|
//! The output is a 3- or 4-channel floating-point matrix.
|
|
//! Each element of this matrix will contain the 3D coordinates of the point (x,y,z,1), computed from the disparity map.
|
|
//! Q is the 4x4 perspective transformation matrix that can be obtained with cvStereoRectify.
|
|
CV_EXPORTS void reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, int dst_cn = 4, Stream& stream = Stream::Null());
|
|
|
|
//! Does coloring of disparity image: [0..ndisp) -> [0..240, 1, 1] in HSV.
|
|
//! Supported types of input disparity: CV_8U, CV_16S.
|
|
//! Output disparity has CV_8UC4 type in BGRA format (alpha = 255).
|
|
CV_EXPORTS void drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp, Stream& stream = Stream::Null());
|
|
|
|
}} // namespace cv { namespace gpu {
|
|
|
|
#endif /* __OPENCV_GPUSTEREO_HPP__ */
|