d7ff3ad0cf
* converted it into Algorithm
136 lines
4.9 KiB
C++
136 lines
4.9 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "perf_precomp.hpp"
|
|
|
|
using namespace std;
|
|
using namespace testing;
|
|
using namespace perf;
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// CornerHarris
|
|
|
|
DEF_PARAM_TEST(Image_Type_Border_BlockSz_ApertureSz, string, MatType, BorderMode, int, int);
|
|
|
|
PERF_TEST_P(Image_Type_Border_BlockSz_ApertureSz, CornerHarris,
|
|
Combine(Values<string>("gpu/stereobm/aloe-L.png"),
|
|
Values(CV_8UC1, CV_32FC1),
|
|
Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_REFLECT)),
|
|
Values(3, 5, 7),
|
|
Values(0, 3, 5, 7)))
|
|
{
|
|
const string fileName = GET_PARAM(0);
|
|
const int type = GET_PARAM(1);
|
|
const int borderMode = GET_PARAM(2);
|
|
const int blockSize = GET_PARAM(3);
|
|
const int apertureSize = GET_PARAM(4);
|
|
|
|
cv::Mat img = readImage(fileName, cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0);
|
|
|
|
const double k = 0.5;
|
|
|
|
if (PERF_RUN_GPU())
|
|
{
|
|
const cv::gpu::GpuMat d_img(img);
|
|
cv::gpu::GpuMat dst;
|
|
|
|
cv::Ptr<cv::gpu::CornernessCriteria> harris = cv::gpu::createHarrisCorner(img.type(), blockSize, apertureSize, k, borderMode);
|
|
|
|
TEST_CYCLE() harris->compute(d_img, dst);
|
|
|
|
GPU_SANITY_CHECK(dst, 1e-4);
|
|
}
|
|
else
|
|
{
|
|
cv::Mat dst;
|
|
|
|
TEST_CYCLE() cv::cornerHarris(img, dst, blockSize, apertureSize, k, borderMode);
|
|
|
|
CPU_SANITY_CHECK(dst);
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// CornerMinEigenVal
|
|
|
|
PERF_TEST_P(Image_Type_Border_BlockSz_ApertureSz, CornerMinEigenVal,
|
|
Combine(Values<string>("gpu/stereobm/aloe-L.png"),
|
|
Values(CV_8UC1, CV_32FC1),
|
|
Values(BorderMode(cv::BORDER_REFLECT101), BorderMode(cv::BORDER_REPLICATE), BorderMode(cv::BORDER_REFLECT)),
|
|
Values(3, 5, 7),
|
|
Values(0, 3, 5, 7)))
|
|
{
|
|
const string fileName = GET_PARAM(0);
|
|
const int type = GET_PARAM(1);
|
|
const int borderMode = GET_PARAM(2);
|
|
const int blockSize = GET_PARAM(3);
|
|
const int apertureSize = GET_PARAM(4);
|
|
|
|
cv::Mat img = readImage(fileName, cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
img.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0);
|
|
|
|
if (PERF_RUN_GPU())
|
|
{
|
|
const cv::gpu::GpuMat d_img(img);
|
|
cv::gpu::GpuMat dst;
|
|
|
|
cv::Ptr<cv::gpu::CornernessCriteria> minEigenVal = cv::gpu::createMinEigenValCorner(img.type(), blockSize, apertureSize, borderMode);
|
|
|
|
TEST_CYCLE() minEigenVal->compute(d_img, dst);
|
|
|
|
GPU_SANITY_CHECK(dst, 1e-4);
|
|
}
|
|
else
|
|
{
|
|
cv::Mat dst;
|
|
|
|
TEST_CYCLE() cv::cornerMinEigenVal(img, dst, blockSize, apertureSize, borderMode);
|
|
|
|
CPU_SANITY_CHECK(dst);
|
|
}
|
|
}
|