31d55af9c1
header only library for CUDA programming
169 lines
4.8 KiB
Plaintext
169 lines
4.8 KiB
Plaintext
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
using namespace cv::cudev;
|
|
using namespace cvtest;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// SqrtTest
|
|
|
|
template <typename T>
|
|
class SqrtTest : public ::testing::Test
|
|
{
|
|
public:
|
|
void test_gpumat()
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
const int type = DataType<T>::type;
|
|
|
|
Mat src = randomMat(size, type);
|
|
|
|
GpuMat_<T> d_src(src);
|
|
|
|
GpuMat_<T> dst = sqrt_(d_src);
|
|
|
|
Mat dst_gold;
|
|
cv::sqrt(src, dst_gold);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|
|
|
|
void test_expr()
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
const int type = DataType<T>::type;
|
|
|
|
Mat src1 = randomMat(size, type);
|
|
Mat src2 = randomMat(size, type);
|
|
|
|
GpuMat_<T> d_src1(src1), d_src2(src2);
|
|
|
|
GpuMat_<T> dst = sqrt_(d_src1 * d_src2);
|
|
|
|
Mat dst_gold;
|
|
cv::multiply(src1, src2, dst_gold);
|
|
cv::sqrt(dst_gold, dst_gold);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|
|
};
|
|
|
|
TYPED_TEST_CASE(SqrtTest, float);
|
|
|
|
TYPED_TEST(SqrtTest, GpuMat)
|
|
{
|
|
SqrtTest<TypeParam>::test_gpumat();
|
|
}
|
|
|
|
TYPED_TEST(SqrtTest, Expr)
|
|
{
|
|
SqrtTest<TypeParam>::test_expr();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// MagnitudeTest
|
|
|
|
template <typename T>
|
|
class MagnitudeTest : public ::testing::Test
|
|
{
|
|
public:
|
|
void test_accuracy()
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
const int type = DataType<T>::type;
|
|
|
|
Mat src1 = randomMat(size, type);
|
|
Mat src2 = randomMat(size, type);
|
|
|
|
GpuMat_<T> d_src1(src1), d_src2(src2);
|
|
|
|
GpuMat_<T> dst1 = hypot_(d_src1, d_src2);
|
|
GpuMat_<T> dst2 = magnitude_(d_src1, d_src2);
|
|
GpuMat_<T> dst3 = sqrt_(sqr_(d_src1) + sqr_(d_src2));
|
|
|
|
EXPECT_MAT_NEAR(dst1, dst2, 1e-4);
|
|
EXPECT_MAT_NEAR(dst2, dst3, 0.0);
|
|
}
|
|
};
|
|
|
|
TYPED_TEST_CASE(MagnitudeTest, float);
|
|
|
|
TYPED_TEST(MagnitudeTest, Accuracy)
|
|
{
|
|
MagnitudeTest<TypeParam>::test_accuracy();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// PowTest
|
|
|
|
template <typename T>
|
|
class PowTest : public ::testing::Test
|
|
{
|
|
public:
|
|
void test_accuracy()
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
const int type = DataType<T>::type;
|
|
|
|
Mat src = randomMat(size, type);
|
|
|
|
GpuMat_<T> d_src(src);
|
|
|
|
GpuMat_<T> dst1 = pow_(d_src, 0.5);
|
|
GpuMat_<T> dst2 = sqrt_(d_src);
|
|
|
|
EXPECT_MAT_NEAR(dst1, dst2, 1e-5);
|
|
}
|
|
};
|
|
|
|
TYPED_TEST_CASE(PowTest, float);
|
|
|
|
TYPED_TEST(PowTest, Accuracy)
|
|
{
|
|
PowTest<TypeParam>::test_accuracy();
|
|
}
|