opencv/modules/ocl/src/gftt.cpp
2013-12-27 14:44:58 +04:00

362 lines
13 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@outlook.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
using namespace cv;
using namespace cv::ocl;
// currently sort procedure on the host is more efficient
static bool use_cpu_sorter = true;
// compact structure for corners
struct DefCorner
{
float eig; //eigenvalue of corner
short x; //x coordinate of corner point
short y; //y coordinate of corner point
} ;
// compare procedure for corner
//it is used for sort on the host side
struct DefCornerCompare
{
bool operator()(const DefCorner a, const DefCorner b) const
{
return a.eig > b.eig;
}
};
// sort corner point using opencl bitonicosrt implementation
static void sortCorners_caller(oclMat& corners, const int count)
{
Context * cxt = Context::getContext();
int GS = count/2;
int LS = min(255,GS);
size_t globalThreads[3] = {GS, 1, 1};
size_t localThreads[3] = {LS, 1, 1};
// 2^numStages should be equal to count or the output is invalid
int numStages = 0;
for(int i = count; i > 1; i >>= 1)
{
++numStages;
}
const int argc = 4;
std::vector< std::pair<size_t, const void *> > args(argc);
std::string kernelname = "sortCorners_bitonicSort";
args[0] = std::make_pair(sizeof(cl_mem), (void *)&corners.data);
args[1] = std::make_pair(sizeof(cl_int), (void *)&count);
for(int stage = 0; stage < numStages; ++stage)
{
args[2] = std::make_pair(sizeof(cl_int), (void *)&stage);
for(int passOfStage = 0; passOfStage < stage + 1; ++passOfStage)
{
args[3] = std::make_pair(sizeof(cl_int), (void *)&passOfStage);
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1);
}
}
}
// find corners on matrix and put it into array
static void findCorners_caller(
const oclMat& eig_mat, //input matrix worth eigenvalues
oclMat& eigMinMax, //input with min and max values of eigenvalues
const float qualityLevel,
const oclMat& mask,
oclMat& corners, //output array with detected corners
oclMat& counter) //output value with number of detected corners, have to be 0 before call
{
string opt;
std::vector<int> k;
Context * cxt = Context::getContext();
std::vector< std::pair<size_t, const void*> > args;
const int mask_strip = mask.step / mask.elemSize1();
args.push_back(make_pair( sizeof(cl_mem), (void*)&(eig_mat.data)));
int src_pitch = (int)eig_mat.step;
args.push_back(make_pair( sizeof(cl_int), (void*)&src_pitch ));
args.push_back(make_pair( sizeof(cl_mem), (void*)&mask.data ));
args.push_back(make_pair( sizeof(cl_mem), (void*)&corners.data ));
args.push_back(make_pair( sizeof(cl_int), (void*)&mask_strip));
args.push_back(make_pair( sizeof(cl_mem), (void*)&eigMinMax.data ));
args.push_back(make_pair( sizeof(cl_float), (void*)&qualityLevel ));
args.push_back(make_pair( sizeof(cl_int), (void*)&eig_mat.rows ));
args.push_back(make_pair( sizeof(cl_int), (void*)&eig_mat.cols ));
args.push_back(make_pair( sizeof(cl_int), (void*)&corners.cols ));
args.push_back(make_pair( sizeof(cl_mem), (void*)&counter.data ));
size_t globalThreads[3] = {eig_mat.cols, eig_mat.rows, 1};
size_t localThreads[3] = {16, 16, 1};
if(!mask.empty())
opt += " -D WITH_MASK=1";
openCLExecuteKernel(cxt, &imgproc_gftt, "findCorners", globalThreads, localThreads, args, -1, -1, opt.c_str());
}
static void minMaxEig_caller(const oclMat &src, oclMat &dst, oclMat & tozero)
{
size_t groupnum = src.clCxt->getDeviceInfo().maxComputeUnits;
CV_Assert(groupnum != 0);
int dbsize = groupnum * 2 * src.elemSize();
ensureSizeIsEnough(1, dbsize, CV_8UC1, dst);
cl_mem dst_data = reinterpret_cast<cl_mem>(dst.data);
int all_cols = src.step / src.elemSize();
int pre_cols = (src.offset % src.step) / src.elemSize();
int sec_cols = all_cols - (src.offset % src.step + src.cols * src.elemSize() - 1) / src.elemSize() - 1;
int invalid_cols = pre_cols + sec_cols;
int cols = all_cols - invalid_cols , elemnum = cols * src.rows;
int offset = src.offset / src.elemSize();
{// first parallel pass
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst_data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&invalid_cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset));
args.push_back( make_pair( sizeof(cl_int) , (void *)&elemnum));
args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum));
size_t globalThreads[3] = {groupnum * 256, 1, 1};
size_t localThreads[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &arithm_minMax, "arithm_op_minMax", globalThreads, localThreads,
args, -1, -1, "-D T=float -D DEPTH_5");
}
{// run final "serial" kernel to find accumulate results from threads and reset corner counter
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst_data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&tozero.data ));
size_t globalThreads[3] = {1, 1, 1};
size_t localThreads[3] = {1, 1, 1};
openCLExecuteKernel(src.clCxt, &imgproc_gftt, "arithm_op_minMax_final", globalThreads, localThreads,
args, -1, -1);
}
}
void cv::ocl::GoodFeaturesToTrackDetector_OCL::operator ()(const oclMat& image, oclMat& corners, const oclMat& mask)
{
CV_Assert(qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0);
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()));
ensureSizeIsEnough(image.size(), CV_32F, eig_);
if (useHarrisDetector)
cornerHarris_dxdy(image, eig_, Dx_, Dy_, blockSize, 3, harrisK);
else
cornerMinEigenVal_dxdy(image, eig_, Dx_, Dy_, blockSize, 3);
ensureSizeIsEnough(1,1, CV_32SC1, counter_);
// find max eigenvalue and reset detected counters
minMaxEig_caller(eig_,eig_minmax_,counter_);
// allocate buffer for kernels
int corner_array_size = std::max(1024, static_cast<int>(image.size().area() * 0.05));
if(!use_cpu_sorter)
{ // round to 2^n
unsigned int n=1;
for(n=1;n<(unsigned int)corner_array_size;n<<=1) ;
corner_array_size = (int)n;
ensureSizeIsEnough(1, corner_array_size , CV_32FC2, tmpCorners_);
// set to 0 to be able use bitonic sort on whole 2^n array
tmpCorners_.setTo(0);
}
else
{
ensureSizeIsEnough(1, corner_array_size , CV_32FC2, tmpCorners_);
}
int total = tmpCorners_.cols; // by default the number of corner is full array
vector<DefCorner> tmp(tmpCorners_.cols); // input buffer with corner for HOST part of algorithm
//find points with high eigenvalue and put it into the output array
findCorners_caller(
eig_,
eig_minmax_,
static_cast<float>(qualityLevel),
mask,
tmpCorners_,
counter_);
if(!use_cpu_sorter)
{// sort detected corners on deivce side
sortCorners_caller(tmpCorners_, corner_array_size);
}
else
{// send non-blocking request to read real non-zero number of corners to sort it on the HOST side
openCLVerifyCall(clEnqueueReadBuffer(getClCommandQueue(counter_.clCxt), (cl_mem)counter_.data, CL_FALSE, 0,sizeof(int), &total, 0, NULL, NULL));
}
//blocking read whole corners array (sorted or not sorted)
openCLReadBuffer(tmpCorners_.clCxt,(cl_mem)tmpCorners_.data,&tmp[0],tmpCorners_.cols*sizeof(DefCorner));
if (total == 0)
{// check for trivial case
corners.release();
return;
}
if(use_cpu_sorter)
{// sort detected corners on cpu side.
tmp.resize(total);
cv::sort(tmp,DefCornerCompare());
}
//estimate maximal size of final output array
int total_max = maxCorners > 0 ? std::min(maxCorners, total) : total;
int D2 = (int)ceil(minDistance * minDistance);
// allocate output buffer
vector<Point2f> tmp2;
tmp2.reserve(total_max);
if (minDistance < 1)
{// we have not distance restriction. then just copy with conversion maximal allowed points into output array
for(int i=0;i<total_max && tmp[i].eig>0.0f;++i)
{
tmp2.push_back(Point2f(tmp[i].x,tmp[i].y));
}
}
else
{// we have distance restriction. then start coping to output array from the first element and check distance for each next one
const int cell_size = cvRound(minDistance);
const int grid_width = (image.cols + cell_size - 1) / cell_size;
const int grid_height = (image.rows + cell_size - 1) / cell_size;
std::vector< std::vector<Point2i> > grid(grid_width * grid_height);
for (int i = 0; i < total ; ++i)
{
DefCorner p = tmp[i];
if(p.eig<=0.0f)
break; // condition to stop that is needed for GPU bitonic sort usage.
bool good = true;
int x_cell = static_cast<int>(p.x / cell_size);
int y_cell = static_cast<int>(p.y / cell_size);
int x1 = x_cell - 1;
int y1 = y_cell - 1;
int x2 = x_cell + 1;
int y2 = y_cell + 1;
// boundary check
x1 = std::max(0, x1);
y1 = std::max(0, y1);
x2 = std::min(grid_width - 1, x2);
y2 = std::min(grid_height - 1, y2);
for (int yy = y1; yy <= y2; yy++)
{
for (int xx = x1; xx <= x2; xx++)
{
vector<Point2i>& m = grid[yy * grid_width + xx];
if (m.empty())
continue;
for(size_t j = 0; j < m.size(); j++)
{
int dx = p.x - m[j].x;
int dy = p.y - m[j].y;
if (dx * dx + dy * dy < D2)
{
good = false;
goto break_out_;
}
}
}
}
break_out_:
if(good)
{
grid[y_cell * grid_width + x_cell].push_back(Point2i(p.x,p.y));
tmp2.push_back(Point2f(p.x,p.y));
if (maxCorners > 0 && tmp2.size() == static_cast<size_t>(maxCorners))
break;
}
}
}
int final_size = static_cast<int>(tmp2.size());
if(final_size>0)
corners.upload(Mat(1, final_size, CV_32FC2, &tmp2[0]));
else
corners.release();
}
void cv::ocl::GoodFeaturesToTrackDetector_OCL::downloadPoints(const oclMat &points, vector<Point2f> &points_v)
{
CV_DbgAssert(points.type() == CV_32FC2);
points_v.resize(points.cols);
openCLSafeCall(clEnqueueReadBuffer(
*(cl_command_queue*)getClCommandQueuePtr(),
reinterpret_cast<cl_mem>(points.data),
CL_TRUE,
0,
points.cols * sizeof(Point2f),
&points_v[0],
0,
NULL,
NULL));
}