135 lines
4.2 KiB
ReStructuredText
135 lines
4.2 KiB
ReStructuredText
.. _cascade_classifier:
|
|
|
|
Cascade Classifier
|
|
*******************
|
|
|
|
Goal
|
|
=====
|
|
|
|
In this tutorial you will learn how to:
|
|
|
|
.. container:: enumeratevisibleitemswithsquare
|
|
|
|
* Use the :cascade_classifier:`CascadeClassifier <>` class to detect objects in a video stream. Particularly, we will use the functions:
|
|
|
|
* :cascade_classifier_load:`load <>` to load a .xml classifier file. It can be either a Haar or a LBP classifer
|
|
* :cascade_classifier_detect_multiscale:`detectMultiScale <>` to perform the detection.
|
|
|
|
|
|
Theory
|
|
======
|
|
|
|
Code
|
|
====
|
|
|
|
This tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/objectDetection/objectDetection.cpp>`_ . The second version (using LBP for face detection) can be `found here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/objectDetection/objectDetection2.cpp>`_
|
|
|
|
.. code-block:: cpp
|
|
|
|
#include "opencv2/objdetect/objdetect.hpp"
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
#include "opencv2/imgproc/imgproc.hpp"
|
|
|
|
#include <iostream>
|
|
#include <stdio.h>
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
/** Function Headers */
|
|
void detectAndDisplay( Mat frame );
|
|
|
|
/** Global variables */
|
|
String face_cascade_name = "haarcascade_frontalface_alt.xml";
|
|
String eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml";
|
|
CascadeClassifier face_cascade;
|
|
CascadeClassifier eyes_cascade;
|
|
string window_name = "Capture - Face detection";
|
|
RNG rng(12345);
|
|
|
|
/** @function main */
|
|
int main( int argc, const char** argv )
|
|
{
|
|
CvCapture* capture;
|
|
Mat frame;
|
|
|
|
//-- 1. Load the cascades
|
|
if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };
|
|
if( !eyes_cascade.load( eyes_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };
|
|
|
|
//-- 2. Read the video stream
|
|
capture = cvCaptureFromCAM( -1 );
|
|
if( capture )
|
|
{
|
|
while( true )
|
|
{
|
|
frame = cvQueryFrame( capture );
|
|
|
|
//-- 3. Apply the classifier to the frame
|
|
if( !frame.empty() )
|
|
{ detectAndDisplay( frame ); }
|
|
else
|
|
{ printf(" --(!) No captured frame -- Break!"); break; }
|
|
|
|
int c = waitKey(10);
|
|
if( (char)c == 'c' ) { break; }
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** @function detectAndDisplay */
|
|
void detectAndDisplay( Mat frame )
|
|
{
|
|
std::vector<Rect> faces;
|
|
Mat frame_gray;
|
|
|
|
cvtColor( frame, frame_gray, CV_BGR2GRAY );
|
|
equalizeHist( frame_gray, frame_gray );
|
|
|
|
//-- Detect faces
|
|
face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );
|
|
|
|
for( int i = 0; i < faces.size(); i++ )
|
|
{
|
|
Point center( faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5 );
|
|
ellipse( frame, center, Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 );
|
|
|
|
Mat faceROI = frame_gray( faces[i] );
|
|
std::vector<Rect> eyes;
|
|
|
|
//-- In each face, detect eyes
|
|
eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CV_HAAR_SCALE_IMAGE, Size(30, 30) );
|
|
|
|
for( int j = 0; j < eyes.size(); j++ )
|
|
{
|
|
Point center( faces[i].x + eyes[j].x + eyes[j].width*0.5, faces[i].y + eyes[j].y + eyes[j].height*0.5 );
|
|
int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 );
|
|
circle( frame, center, radius, Scalar( 255, 0, 0 ), 4, 8, 0 );
|
|
}
|
|
}
|
|
//-- Show what you got
|
|
imshow( window_name, frame );
|
|
}
|
|
|
|
Explanation
|
|
============
|
|
|
|
Result
|
|
======
|
|
|
|
#. Here is the result of running the code above and using as input the video stream of a build-in webcam:
|
|
|
|
.. image:: images/Cascade_Classifier_Tutorial_Result_Haar.jpg
|
|
:align: center
|
|
:height: 300pt
|
|
|
|
Remember to copy the files *haarcascade_frontalface_alt.xml* and *haarcascade_eye_tree_eyeglasses.xml* in your current directory. They are located in *opencv/data/haarcascades*
|
|
|
|
#. This is the result of using the file *lbpcascade_frontalface.xml* (LBP trained) for the face detection. For the eyes we keep using the file used in the tutorial.
|
|
|
|
.. image:: images/Cascade_Classifier_Tutorial_Result_LBP.jpg
|
|
:align: center
|
|
:height: 300pt
|
|
|