183 lines
5.8 KiB
ReStructuredText
183 lines
5.8 KiB
ReStructuredText
.. _hough_circle:
|
|
|
|
Hough Circle Transform
|
|
***********************
|
|
|
|
Goal
|
|
=====
|
|
In this tutorial you will learn how to:
|
|
|
|
* Use the OpenCV function :hough_circles:`HoughCircles <>` to detect circles in an image.
|
|
|
|
Theory
|
|
=======
|
|
|
|
Hough Circle Transform
|
|
------------------------
|
|
|
|
* The Hough Circle Transform works in a *roughly* analogous way to the Hough Line Transform explained in the previous tutorial.
|
|
* In the line detection case, a line was defined by two parameters :math:`(r, \theta)`. In the circle case, we need three parameters to define a circle:
|
|
|
|
.. math::
|
|
|
|
C : ( x_{center}, y_{center}, r )
|
|
|
|
where :math:`(x_{center}, y_{center})` define the center position (gree point) and :math:`r` is the radius, which allows us to completely define a circle, as it can be seen below:
|
|
|
|
.. image:: images/Hough_Circle_Tutorial_Theory_0.jpg
|
|
:alt: Result of detecting circles with Hough Transform
|
|
:align: center
|
|
|
|
* For sake of efficiency, OpenCV implements a detection method slightly trickier than the standard Hough Transform: *The Hough gradient method*. For more details, please check the book *Learning OpenCV* or your favorite Computer Vision bibliography
|
|
|
|
Code
|
|
======
|
|
|
|
#. **What does this program do?**
|
|
|
|
* Loads an image and blur it to reduce the noise
|
|
* Applies the *Hough Circle Transform* to the blurred image .
|
|
* Display the detected circle in a window.
|
|
|
|
.. |TutorialHoughCirclesSimpleDownload| replace:: here
|
|
.. _TutorialHoughCirclesSimpleDownload: https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/houghlines.cpp
|
|
.. |TutorialHoughCirclesFancyDownload| replace:: here
|
|
.. _TutorialHoughCirclesFancyDownload: https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/HoughCircle_Demo.cpp
|
|
|
|
#. The sample code that we will explain can be downloaded from |TutorialHoughCirclesSimpleDownload|_. A slightly fancier version (which shows both Hough standard and probabilistic with trackbars for changing the threshold values) can be found |TutorialHoughCirclesFancyDownload|_.
|
|
|
|
.. code-block:: cpp
|
|
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
#include "opencv2/imgproc/imgproc.hpp"
|
|
#include <iostream>
|
|
#include <stdio.h>
|
|
|
|
using namespace cv;
|
|
|
|
/** @function main */
|
|
int main(int argc, char** argv)
|
|
{
|
|
Mat src, src_gray;
|
|
|
|
/// Read the image
|
|
src = imread( argv[1], 1 );
|
|
|
|
if( !src.data )
|
|
{ return -1; }
|
|
|
|
/// Convert it to gray
|
|
cvtColor( src, src_gray, CV_BGR2GRAY );
|
|
|
|
/// Reduce the noise so we avoid false circle detection
|
|
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 );
|
|
|
|
vector<Vec3f> circles;
|
|
|
|
/// Apply the Hough Transform to find the circles
|
|
HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0 );
|
|
|
|
/// Draw the circles detected
|
|
for( size_t i = 0; i < circles.size(); i++ )
|
|
{
|
|
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
|
|
int radius = cvRound(circles[i][2]);
|
|
// circle center
|
|
circle( src, center, 3, Scalar(0,255,0), -1, 8, 0 );
|
|
// circle outline
|
|
circle( src, center, radius, Scalar(0,0,255), 3, 8, 0 );
|
|
}
|
|
|
|
/// Show your results
|
|
namedWindow( "Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE );
|
|
imshow( "Hough Circle Transform Demo", src );
|
|
|
|
waitKey(0);
|
|
return 0;
|
|
}
|
|
|
|
|
|
Explanation
|
|
============
|
|
|
|
|
|
#. Load an image
|
|
|
|
.. code-block:: cpp
|
|
|
|
src = imread( argv[1], 1 );
|
|
|
|
if( !src.data )
|
|
{ return -1; }
|
|
|
|
#. Convert it to grayscale:
|
|
|
|
.. code-block:: cpp
|
|
|
|
cvtColor( src, src_gray, CV_BGR2GRAY );
|
|
|
|
#. Apply a Gaussian blur to reduce noise and avoid false circle detection:
|
|
|
|
.. code-block:: cpp
|
|
|
|
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 );
|
|
|
|
#. Proceed to apply Hough Circle Transform:
|
|
|
|
.. code-block:: cpp
|
|
|
|
vector<Vec3f> circles;
|
|
|
|
HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0 );
|
|
|
|
with the arguments:
|
|
|
|
* *src_gray*: Input image (grayscale)
|
|
* *circles*: A vector that stores sets of 3 values: :math:`x_{c}, y_{c}, r` for each detected circle.
|
|
* *CV_HOUGH_GRADIENT*: Define the detection method. Currently this is the only one available in OpenCV
|
|
* *dp = 1*: The inverse ratio of resolution
|
|
* *min_dist = src_gray.rows/8*: Minimum distance between detected centers
|
|
* *param_1 = 200*: Upper threshold for the internal Canny edge detector
|
|
* *param_2* = 100*: Threshold for center detection.
|
|
* *min_radius = 0*: Minimum radio to be detected. If unknown, put zero as default.
|
|
* *max_radius = 0*: Maximum radius to be detected. If unknown, put zero as default
|
|
|
|
#. Draw the detected circles:
|
|
|
|
.. code-block:: cpp
|
|
|
|
for( size_t i = 0; i < circles.size(); i++ )
|
|
{
|
|
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
|
|
int radius = cvRound(circles[i][2]);
|
|
// circle center
|
|
circle( src, center, 3, Scalar(0,255,0), -1, 8, 0 );
|
|
// circle outline
|
|
circle( src, center, radius, Scalar(0,0,255), 3, 8, 0 );
|
|
}
|
|
|
|
You can see that we will draw the circle(s) on red and the center(s) with a small green dot
|
|
|
|
#. Display the detected circle(s):
|
|
|
|
.. code-block:: cpp
|
|
|
|
namedWindow( "Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE );
|
|
imshow( "Hough Circle Transform Demo", src );
|
|
|
|
#. Wait for the user to exit the program
|
|
|
|
.. code-block:: cpp
|
|
|
|
waitKey(0);
|
|
|
|
|
|
Result
|
|
=======
|
|
|
|
The result of running the code above with a test image is shown below:
|
|
|
|
.. image:: images/Hough_Circle_Tutorial_Result.jpg
|
|
:alt: Result of detecting circles with Hough Transform
|
|
:align: center
|