409 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			409 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
 | |
| // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
 | |
| // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // @Authors
 | |
| //    Niko Li, newlife20080214@gmail.com
 | |
| //    Jia Haipeng, jiahaipeng95@gmail.com
 | |
| //    Shengen Yan, yanshengen@gmail.com
 | |
| //    Jiang Liyuan, lyuan001.good@163.com
 | |
| //    Rock Li, Rock.Li@amd.com
 | |
| //    Wu Zailong, bullet@yeah.net
 | |
| //    Xu Pang, pangxu010@163.com
 | |
| //    Sen Liu, swjtuls1987@126.com
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #ifdef HAVE_OPENCL
 | |
| 
 | |
| using namespace testing;
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|     short x;
 | |
|     short y;
 | |
| } COOR;
 | |
| 
 | |
| COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep, Size size, int sp, int sr, int maxIter, float eps, int *tab)
 | |
| {
 | |
| 
 | |
|     int isr2 = sr * sr;
 | |
|     int c0, c1, c2, c3;
 | |
|     int iter;
 | |
|     uchar *ptr = NULL;
 | |
|     uchar *pstart = NULL;
 | |
|     int revx = 0, revy = 0;
 | |
|     c0 = sptr[0];
 | |
|     c1 = sptr[1];
 | |
|     c2 = sptr[2];
 | |
|     c3 = sptr[3];
 | |
|     // iterate meanshift procedure
 | |
|     for(iter = 0; iter < maxIter; iter++ )
 | |
|     {
 | |
|         int count = 0;
 | |
|         int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
 | |
| 
 | |
|         //mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
 | |
|         int minx = x0 - sp;
 | |
|         int miny = y0 - sp;
 | |
|         int maxx = x0 + sp;
 | |
|         int maxy = y0 + sp;
 | |
| 
 | |
|         //deal with the image boundary
 | |
|         if(minx < 0) minx = 0;
 | |
|         if(miny < 0) miny = 0;
 | |
|         if(maxx >= size.width) maxx = size.width - 1;
 | |
|         if(maxy >= size.height) maxy = size.height - 1;
 | |
|         if(iter == 0)
 | |
|         {
 | |
|             pstart = sptr;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             pstart = pstart + revy * sstep + (revx << 2); //point to the new position
 | |
|         }
 | |
|         ptr = pstart;
 | |
|         ptr = ptr + (miny - y0) * sstep + ((minx - x0) << 2); //point to the start in the row
 | |
| 
 | |
|         for( int y = miny; y <= maxy; y++, ptr += sstep - ((maxx - minx + 1) << 2))
 | |
|         {
 | |
|             int rowCount = 0;
 | |
|             int x = minx;
 | |
| #if CV_ENABLE_UNROLLED
 | |
|             for( ; x + 4 <= maxx; x += 4, ptr += 16)
 | |
|             {
 | |
|                 int t0, t1, t2;
 | |
|                 t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
 | |
|                 if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
 | |
|                 {
 | |
|                     s0 += t0;
 | |
|                     s1 += t1;
 | |
|                     s2 += t2;
 | |
|                     sx += x;
 | |
|                     rowCount++;
 | |
|                 }
 | |
|                 t0 = ptr[4], t1 = ptr[5], t2 = ptr[6];
 | |
|                 if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
 | |
|                 {
 | |
|                     s0 += t0;
 | |
|                     s1 += t1;
 | |
|                     s2 += t2;
 | |
|                     sx += x + 1;
 | |
|                     rowCount++;
 | |
|                 }
 | |
|                 t0 = ptr[8], t1 = ptr[9], t2 = ptr[10];
 | |
|                 if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
 | |
|                 {
 | |
|                     s0 += t0;
 | |
|                     s1 += t1;
 | |
|                     s2 += t2;
 | |
|                     sx += x + 2;
 | |
|                     rowCount++;
 | |
|                 }
 | |
|                 t0 = ptr[12], t1 = ptr[13], t2 = ptr[14];
 | |
|                 if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
 | |
|                 {
 | |
|                     s0 += t0;
 | |
|                     s1 += t1;
 | |
|                     s2 += t2;
 | |
|                     sx += x + 3;
 | |
|                     rowCount++;
 | |
|                 }
 | |
|             }
 | |
| #endif
 | |
|             for(; x <= maxx; x++, ptr += 4)
 | |
|             {
 | |
|                 int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
 | |
|                 if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
 | |
|                 {
 | |
|                     s0 += t0;
 | |
|                     s1 += t1;
 | |
|                     s2 += t2;
 | |
|                     sx += x;
 | |
|                     rowCount++;
 | |
|                 }
 | |
|             }
 | |
|             if(rowCount == 0)
 | |
|                 continue;
 | |
|             count += rowCount;
 | |
|             sy += y * rowCount;
 | |
|         }
 | |
| 
 | |
|         if( count == 0 )
 | |
|             break;
 | |
| 
 | |
|         int x1 = sx / count;
 | |
|         int y1 = sy / count;
 | |
|         s0 = s0 / count;
 | |
|         s1 = s1 / count;
 | |
|         s2 = s2 / count;
 | |
| 
 | |
|         bool stopFlag = (x0 == x1 && y0 == y1) || (abs(x1 - x0) + abs(y1 - y0) +
 | |
|                         tab[s0 - c0 + 255] + tab[s1 - c1 + 255] + tab[s2 - c2 + 255] <= eps);
 | |
| 
 | |
|         //revise the pointer corresponding to the new (y0,x0)
 | |
|         revx = x1 - x0;
 | |
|         revy = y1 - y0;
 | |
| 
 | |
|         x0 = x1;
 | |
|         y0 = y1;
 | |
|         c0 = s0;
 | |
|         c1 = s1;
 | |
|         c2 = s2;
 | |
| 
 | |
|         if( stopFlag )
 | |
|             break;
 | |
|     } //for iter
 | |
| 
 | |
|     dptr[0] = (uchar)c0;
 | |
|     dptr[1] = (uchar)c1;
 | |
|     dptr[2] = (uchar)c2;
 | |
|     dptr[3] = (uchar)c3;
 | |
| 
 | |
|     COOR coor;
 | |
|     coor.x = (short)x0;
 | |
|     coor.y = (short)y0;
 | |
|     return coor;
 | |
| }
 | |
| 
 | |
| void meanShiftFiltering_(const Mat &src_roi, Mat &dst_roi, int sp, int sr, TermCriteria crit)
 | |
| {
 | |
|     if( src_roi.empty() )
 | |
|         CV_Error( CV_StsBadArg, "The input image is empty" );
 | |
| 
 | |
|     if( src_roi.depth() != CV_8U || src_roi.channels() != 4 )
 | |
|         CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
 | |
| 
 | |
|     CV_Assert( (src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) );
 | |
|     CV_Assert( !(dst_roi.step & 0x3) );
 | |
| 
 | |
|     if( !(crit.type & TermCriteria::MAX_ITER) )
 | |
|         crit.maxCount = 5;
 | |
|     int maxIter = std::min(std::max(crit.maxCount, 1), 100);
 | |
|     float eps;
 | |
|     if( !(crit.type & TermCriteria::EPS) )
 | |
|         eps = 1.f;
 | |
|     eps = (float)std::max(crit.epsilon, 0.0);
 | |
| 
 | |
|     int tab[512];
 | |
|     for(int i = 0; i < 512; i++)
 | |
|         tab[i] = (i - 255) * (i - 255);
 | |
|     uchar *sptr = src_roi.data;
 | |
|     uchar *dptr = dst_roi.data;
 | |
|     int sstep = (int)src_roi.step;
 | |
|     int dstep = (int)dst_roi.step;
 | |
|     Size size = src_roi.size();
 | |
| 
 | |
|     for(int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2),
 | |
|             dptr += dstep - (size.width << 2))
 | |
|     {
 | |
|         for(int j = 0; j < size.width; j++, sptr += 4, dptr += 4)
 | |
|         {
 | |
|             do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void meanShiftProc_(const Mat &src_roi, Mat &dst_roi, Mat &dstCoor_roi, int sp, int sr, TermCriteria crit)
 | |
| {
 | |
|     if( src_roi.empty() )
 | |
|         CV_Error( CV_StsBadArg, "The input image is empty" );
 | |
|     if( src_roi.depth() != CV_8U || src_roi.channels() != 4 )
 | |
|         CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
 | |
|     CV_Assert( (src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) &&
 | |
|                (src_roi.cols == dstCoor_roi.cols) && (src_roi.rows == dstCoor_roi.rows));
 | |
|     CV_Assert( !(dstCoor_roi.step & 0x3) );
 | |
| 
 | |
|     if( !(crit.type & TermCriteria::MAX_ITER) )
 | |
|         crit.maxCount = 5;
 | |
|     int maxIter = std::min(std::max(crit.maxCount, 1), 100);
 | |
|     float eps;
 | |
|     if( !(crit.type & TermCriteria::EPS) )
 | |
|         eps = 1.f;
 | |
|     eps = (float)std::max(crit.epsilon, 0.0);
 | |
| 
 | |
|     int tab[512];
 | |
|     for(int i = 0; i < 512; i++)
 | |
|         tab[i] = (i - 255) * (i - 255);
 | |
|     uchar *sptr = src_roi.data;
 | |
|     uchar *dptr = dst_roi.data;
 | |
|     short *dCoorptr = (short *)dstCoor_roi.data;
 | |
|     int sstep = (int)src_roi.step;
 | |
|     int dstep = (int)dst_roi.step;
 | |
|     int dCoorstep = (int)dstCoor_roi.step >> 1;
 | |
|     Size size = src_roi.size();
 | |
| 
 | |
|     for(int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2),
 | |
|             dptr += dstep - (size.width << 2), dCoorptr += dCoorstep - (size.width << 1))
 | |
|     {
 | |
|         for(int j = 0; j < size.width; j++, sptr += 4, dptr += 4, dCoorptr += 2)
 | |
|         {
 | |
|             *((COOR *)dCoorptr) = do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| //////////////////////////////// meanShift //////////////////////////////////////////
 | |
| 
 | |
| PARAM_TEST_CASE(meanShiftTestBase, MatType, MatType, int, int, TermCriteria, bool)
 | |
| {
 | |
|     int type, typeCoor;
 | |
|     int sp, sr;
 | |
|     TermCriteria crit;
 | |
|     bool useRoi;
 | |
| 
 | |
|     // src mat
 | |
|     Mat src, src_roi;
 | |
|     Mat dst, dst_roi;
 | |
|     Mat dstCoor, dstCoor_roi;
 | |
| 
 | |
|     // ocl dst mat
 | |
|     ocl::oclMat gsrc, gsrc_roi;
 | |
|     ocl::oclMat gdst, gdst_roi;
 | |
|     ocl::oclMat gdstCoor, gdstCoor_roi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         type = GET_PARAM(0);
 | |
|         typeCoor = GET_PARAM(1);
 | |
|         sp = GET_PARAM(2);
 | |
|         sr = GET_PARAM(3);
 | |
|         crit = GET_PARAM(4);
 | |
|         useRoi = GET_PARAM(5);
 | |
|     }
 | |
| 
 | |
|     void random_roi()
 | |
|     {
 | |
|         Size roiSize = randomSize(1, MAX_VALUE);
 | |
|         Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
 | |
|         randomSubMat(src, src_roi, roiSize, srcBorder, type, 5, 256);
 | |
|         generateOclMat(gsrc, gsrc_roi, src, roiSize, srcBorder);
 | |
| 
 | |
|         Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
 | |
|         randomSubMat(dst, dst_roi, roiSize, dstBorder, type, 5, 256);
 | |
|         generateOclMat(gdst, gdst_roi, dst, roiSize, dstBorder);
 | |
| 
 | |
|         randomSubMat(dstCoor, dstCoor_roi, roiSize, dstBorder, typeCoor, 5, 256);
 | |
|         generateOclMat(gdstCoor, gdstCoor_roi, dstCoor, roiSize, dstBorder);
 | |
|     }
 | |
| 
 | |
|     void Near(double threshold = 0.0)
 | |
|     {
 | |
|         Mat whole, roi;
 | |
|         gdst.download(whole);
 | |
|         gdst_roi.download(roi);
 | |
| 
 | |
|         EXPECT_MAT_NEAR(dst, whole, threshold);
 | |
|         EXPECT_MAT_NEAR(dst_roi, roi, threshold);
 | |
|     }
 | |
| 
 | |
|     void Near1(double threshold = 0.0)
 | |
|     {
 | |
|         Mat whole, roi;
 | |
|         gdstCoor.download(whole);
 | |
|         gdstCoor_roi.download(roi);
 | |
| 
 | |
|         EXPECT_MAT_NEAR(dstCoor, whole, threshold);
 | |
|         EXPECT_MAT_NEAR(dstCoor_roi, roi, threshold);
 | |
|     }
 | |
| };
 | |
| 
 | |
| /////////////////////////meanShiftFiltering/////////////////////////////
 | |
| 
 | |
| typedef meanShiftTestBase meanShiftFiltering;
 | |
| 
 | |
| OCL_TEST_P(meanShiftFiltering, Mat)
 | |
| {
 | |
|     for (int j = 0; j < LOOP_TIMES; j++)
 | |
|     {
 | |
|         random_roi();
 | |
| 
 | |
|         meanShiftFiltering_(src_roi, dst_roi, sp, sr, crit);
 | |
|         ocl::meanShiftFiltering(gsrc_roi, gdst_roi, sp, sr, crit);
 | |
| 
 | |
|         Near();
 | |
|     }
 | |
| }
 | |
| 
 | |
| ///////////////////////////meanShiftProc//////////////////////////////////
 | |
| 
 | |
| typedef meanShiftTestBase meanShiftProc;
 | |
| 
 | |
| OCL_TEST_P(meanShiftProc, Mat)
 | |
| {
 | |
|     for (int j = 0; j < LOOP_TIMES; j++)
 | |
|     {
 | |
|         random_roi();
 | |
| 
 | |
|         meanShiftProc_(src_roi, dst_roi, dstCoor_roi, sp, sr, crit);
 | |
|         ocl::meanShiftProc(gsrc_roi, gdst_roi, gdstCoor_roi, sp, sr, crit);
 | |
| 
 | |
|         Near();
 | |
|         Near1();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /////////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(Imgproc, meanShiftFiltering, Combine(
 | |
|                             Values((MatType)CV_8UC4),
 | |
|                             Values((MatType)CV_16SC2),
 | |
|                             Values(5),
 | |
|                             Values(6),
 | |
|                             Values(TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 5, 1)),
 | |
|                             Bool()
 | |
|                         ));
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(Imgproc, meanShiftProc, Combine(
 | |
|                             Values((MatType)CV_8UC4),
 | |
|                             Values((MatType)CV_16SC2),
 | |
|                             Values(5),
 | |
|                             Values(6),
 | |
|                             Values(TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 5, 1)),
 | |
|                             Bool()
 | |
|                         ));
 | |
| 
 | |
| #endif // HAVE_OPENCL
 | 
