117 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			117 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python
 | 
						|
 | 
						|
''' This is a sample for histogram plotting for RGB images and grayscale images for better understanding of colour distribution
 | 
						|
 | 
						|
Benefit : Learn how to draw histogram of images
 | 
						|
          Get familier with cv2.calcHist, cv2.equalizeHist,cv2.normalize and some drawing functions
 | 
						|
 | 
						|
Level : Beginner or Intermediate
 | 
						|
 | 
						|
Functions : 1) hist_curve : returns histogram of an image drawn as curves
 | 
						|
            2) hist_lines : return histogram of an image drawn as bins ( only for grayscale images )
 | 
						|
 | 
						|
Usage : python hist.py <image_file>
 | 
						|
 | 
						|
Abid Rahman 3/14/12 debug Gary Bradski
 | 
						|
'''
 | 
						|
 | 
						|
import cv2
 | 
						|
import numpy as np
 | 
						|
 | 
						|
bins = np.arange(256).reshape(256,1)
 | 
						|
 | 
						|
def hist_curve(im):
 | 
						|
    h = np.zeros((300,256,3))
 | 
						|
    if len(im.shape) == 2:
 | 
						|
        color = [(255,255,255)]
 | 
						|
    elif im.shape[2] == 3:
 | 
						|
        color = [ (255,0,0),(0,255,0),(0,0,255) ]
 | 
						|
    for ch, col in enumerate(color):
 | 
						|
        hist_item = cv2.calcHist([im],[ch],None,[256],[0,256])
 | 
						|
        cv2.normalize(hist_item,hist_item,0,255,cv2.NORM_MINMAX)
 | 
						|
        hist=np.int32(np.around(hist_item))
 | 
						|
        pts = np.int32(np.column_stack((bins,hist)))
 | 
						|
        cv2.polylines(h,[pts],False,col)
 | 
						|
    y=np.flipud(h)
 | 
						|
    return y
 | 
						|
 | 
						|
def hist_lines(im):
 | 
						|
    h = np.zeros((300,256,3))
 | 
						|
    if len(im.shape)!=2:
 | 
						|
        print "hist_lines applicable only for grayscale images"
 | 
						|
        #print "so converting image to grayscale for representation"
 | 
						|
        im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
 | 
						|
    hist_item = cv2.calcHist([im],[0],None,[256],[0,256])
 | 
						|
    cv2.normalize(hist_item,hist_item,0,255,cv2.NORM_MINMAX)
 | 
						|
    hist=np.int32(np.around(hist_item))
 | 
						|
    for x,y in enumerate(hist):
 | 
						|
        cv2.line(h,(x,0),(x,y),(255,255,255))
 | 
						|
    y = np.flipud(h)
 | 
						|
    return y
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
 | 
						|
    import sys
 | 
						|
 | 
						|
    if len(sys.argv)>1:
 | 
						|
        fname = sys.argv[1]
 | 
						|
    else :
 | 
						|
        fname = '../cpp/lena.jpg'
 | 
						|
        print "usage : python hist.py <image_file>"
 | 
						|
 | 
						|
    im = cv2.imread(fname)
 | 
						|
 | 
						|
    if im is None:
 | 
						|
        print 'Failed to load image file:', fname
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
    gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
 | 
						|
 | 
						|
 | 
						|
    print ''' Histogram plotting \n
 | 
						|
    Keymap :\n
 | 
						|
    a - show histogram for color image in curve mode \n
 | 
						|
    b - show histogram in bin mode \n
 | 
						|
    c - show equalized histogram (always in bin mode) \n
 | 
						|
    d - show histogram for color image in curve mode \n
 | 
						|
    e - show histogram for a normalized image in curve mode \n
 | 
						|
    Esc - exit \n
 | 
						|
    '''
 | 
						|
 | 
						|
    cv2.imshow('image',im)
 | 
						|
    while True:
 | 
						|
        k = cv2.waitKey(0)&0xFF
 | 
						|
        if k == ord('a'):
 | 
						|
            curve = hist_curve(im)
 | 
						|
            cv2.imshow('histogram',curve)
 | 
						|
            cv2.imshow('image',im)
 | 
						|
            print 'a'
 | 
						|
        elif k == ord('b'):
 | 
						|
            print 'b'
 | 
						|
            lines = hist_lines(im)
 | 
						|
            cv2.imshow('histogram',lines)
 | 
						|
            cv2.imshow('image',gray)
 | 
						|
        elif k == ord('c'):
 | 
						|
            print 'c'
 | 
						|
            equ = cv2.equalizeHist(gray)
 | 
						|
            lines = hist_lines(equ)
 | 
						|
            cv2.imshow('histogram',lines)
 | 
						|
            cv2.imshow('image',equ)
 | 
						|
        elif k == ord('d'):
 | 
						|
            print 'd'
 | 
						|
            curve = hist_curve(gray)
 | 
						|
            cv2.imshow('histogram',curve)
 | 
						|
            cv2.imshow('image',gray)
 | 
						|
        elif k == ord('e'):
 | 
						|
            print 'e'
 | 
						|
            norm = cv2.normalize(gray,alpha = 0,beta = 255,norm_type = cv2.NORM_MINMAX)
 | 
						|
            lines = hist_lines(norm)
 | 
						|
            cv2.imshow('histogram',lines)
 | 
						|
            cv2.imshow('image',norm)
 | 
						|
        elif k == 27:
 | 
						|
            print 'ESC'
 | 
						|
            cv2.destroyAllWindows()
 | 
						|
            break
 | 
						|
    cv2.destroyAllWindows()
 |