285 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			285 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "opencv2/objdetect.hpp"
 | 
						|
#include "opencv2/imgcodecs.hpp"
 | 
						|
#include "opencv2/videoio.hpp"
 | 
						|
#include "opencv2/highgui.hpp"
 | 
						|
#include "opencv2/imgproc.hpp"
 | 
						|
#include "opencv2/core/utility.hpp"
 | 
						|
 | 
						|
#include "opencv2/videoio/videoio_c.h"
 | 
						|
#include "opencv2/highgui/highgui_c.h"
 | 
						|
 | 
						|
#include <cctype>
 | 
						|
#include <iostream>
 | 
						|
#include <iterator>
 | 
						|
#include <stdio.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace cv;
 | 
						|
 | 
						|
static void help()
 | 
						|
{
 | 
						|
    cout << "\nThis program demonstrates the cascade recognizer. Now you can use Haar or LBP features.\n"
 | 
						|
            "This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained.\n"
 | 
						|
            "It's most known use is for faces.\n"
 | 
						|
            "Usage:\n"
 | 
						|
            "./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
 | 
						|
               "   [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n"
 | 
						|
               "   [--scale=<image scale greater or equal to 1, try 1.3 for example>]\n"
 | 
						|
               "   [--try-flip]\n"
 | 
						|
               "   [filename|camera_index]\n\n"
 | 
						|
            "see facedetect.cmd for one call:\n"
 | 
						|
            "./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye.xml\" --scale=1.3\n\n"
 | 
						|
            "During execution:\n\tHit any key to quit.\n"
 | 
						|
            "\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
 | 
						|
}
 | 
						|
 | 
						|
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
 | 
						|
                    CascadeClassifier& nestedCascade,
 | 
						|
                    double scale, bool tryflip );
 | 
						|
 | 
						|
string cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml";
 | 
						|
string nestedCascadeName = "../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml";
 | 
						|
 | 
						|
int main( int argc, const char** argv )
 | 
						|
{
 | 
						|
    CvCapture* capture = 0;
 | 
						|
    Mat frame, frameCopy, image;
 | 
						|
    const string scaleOpt = "--scale=";
 | 
						|
    size_t scaleOptLen = scaleOpt.length();
 | 
						|
    const string cascadeOpt = "--cascade=";
 | 
						|
    size_t cascadeOptLen = cascadeOpt.length();
 | 
						|
    const string nestedCascadeOpt = "--nested-cascade";
 | 
						|
    size_t nestedCascadeOptLen = nestedCascadeOpt.length();
 | 
						|
    const string tryFlipOpt = "--try-flip";
 | 
						|
    size_t tryFlipOptLen = tryFlipOpt.length();
 | 
						|
    string inputName;
 | 
						|
    bool tryflip = false;
 | 
						|
 | 
						|
    help();
 | 
						|
 | 
						|
    CascadeClassifier cascade, nestedCascade;
 | 
						|
    double scale = 1;
 | 
						|
 | 
						|
    for( int i = 1; i < argc; i++ )
 | 
						|
    {
 | 
						|
        cout << "Processing " << i << " " <<  argv[i] << endl;
 | 
						|
        if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 )
 | 
						|
        {
 | 
						|
            cascadeName.assign( argv[i] + cascadeOptLen );
 | 
						|
            cout << "  from which we have cascadeName= " << cascadeName << endl;
 | 
						|
        }
 | 
						|
        else if( nestedCascadeOpt.compare( 0, nestedCascadeOptLen, argv[i], nestedCascadeOptLen ) == 0 )
 | 
						|
        {
 | 
						|
            if( argv[i][nestedCascadeOpt.length()] == '=' )
 | 
						|
                nestedCascadeName.assign( argv[i] + nestedCascadeOpt.length() + 1 );
 | 
						|
            if( !nestedCascade.load( nestedCascadeName ) )
 | 
						|
                cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
 | 
						|
        }
 | 
						|
        else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 )
 | 
						|
        {
 | 
						|
            if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 )
 | 
						|
                scale = 1;
 | 
						|
            cout << " from which we read scale = " << scale << endl;
 | 
						|
        }
 | 
						|
        else if( tryFlipOpt.compare( 0, tryFlipOptLen, argv[i], tryFlipOptLen ) == 0 )
 | 
						|
        {
 | 
						|
            tryflip = true;
 | 
						|
            cout << " will try to flip image horizontally to detect assymetric objects\n";
 | 
						|
        }
 | 
						|
        else if( argv[i][0] == '-' )
 | 
						|
        {
 | 
						|
            cerr << "WARNING: Unknown option %s" << argv[i] << endl;
 | 
						|
        }
 | 
						|
        else
 | 
						|
            inputName.assign( argv[i] );
 | 
						|
    }
 | 
						|
 | 
						|
    if( !cascade.load( cascadeName ) )
 | 
						|
    {
 | 
						|
        cerr << "ERROR: Could not load classifier cascade" << endl;
 | 
						|
        help();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
 | 
						|
    {
 | 
						|
        capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' );
 | 
						|
        int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
 | 
						|
        if(!capture) cout << "Capture from CAM " <<  c << " didn't work" << endl;
 | 
						|
    }
 | 
						|
    else if( inputName.size() )
 | 
						|
    {
 | 
						|
        image = imread( inputName, 1 );
 | 
						|
        if( image.empty() )
 | 
						|
        {
 | 
						|
            capture = cvCaptureFromAVI( inputName.c_str() );
 | 
						|
            if(!capture) cout << "Capture from AVI didn't work" << endl;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        image = imread( "lena.jpg", 1 );
 | 
						|
        if(image.empty()) cout << "Couldn't read lena.jpg" << endl;
 | 
						|
    }
 | 
						|
 | 
						|
    cvNamedWindow( "result", 1 );
 | 
						|
 | 
						|
    if( capture )
 | 
						|
    {
 | 
						|
        cout << "In capture ..." << endl;
 | 
						|
        for(;;)
 | 
						|
        {
 | 
						|
            IplImage* iplImg = cvQueryFrame( capture );
 | 
						|
            frame = cv::cvarrToMat(iplImg);
 | 
						|
            if( frame.empty() )
 | 
						|
                break;
 | 
						|
            if( iplImg->origin == IPL_ORIGIN_TL )
 | 
						|
                frame.copyTo( frameCopy );
 | 
						|
            else
 | 
						|
                flip( frame, frameCopy, 0 );
 | 
						|
 | 
						|
            detectAndDraw( frameCopy, cascade, nestedCascade, scale, tryflip );
 | 
						|
 | 
						|
            if( waitKey( 10 ) >= 0 )
 | 
						|
                goto _cleanup_;
 | 
						|
        }
 | 
						|
 | 
						|
        waitKey(0);
 | 
						|
 | 
						|
_cleanup_:
 | 
						|
        cvReleaseCapture( &capture );
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        cout << "In image read" << endl;
 | 
						|
        if( !image.empty() )
 | 
						|
        {
 | 
						|
            detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
 | 
						|
            waitKey(0);
 | 
						|
        }
 | 
						|
        else if( !inputName.empty() )
 | 
						|
        {
 | 
						|
            /* assume it is a text file containing the
 | 
						|
            list of the image filenames to be processed - one per line */
 | 
						|
            FILE* f = fopen( inputName.c_str(), "rt" );
 | 
						|
            if( f )
 | 
						|
            {
 | 
						|
                char buf[1000+1];
 | 
						|
                while( fgets( buf, 1000, f ) )
 | 
						|
                {
 | 
						|
                    int len = (int)strlen(buf), c;
 | 
						|
                    while( len > 0 && isspace(buf[len-1]) )
 | 
						|
                        len--;
 | 
						|
                    buf[len] = '\0';
 | 
						|
                    cout << "file " << buf << endl;
 | 
						|
                    image = imread( buf, 1 );
 | 
						|
                    if( !image.empty() )
 | 
						|
                    {
 | 
						|
                        detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
 | 
						|
                        c = waitKey(0);
 | 
						|
                        if( c == 27 || c == 'q' || c == 'Q' )
 | 
						|
                            break;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        cerr << "Aw snap, couldn't read image " << buf << endl;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                fclose(f);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    cvDestroyWindow("result");
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
 | 
						|
                    CascadeClassifier& nestedCascade,
 | 
						|
                    double scale, bool tryflip )
 | 
						|
{
 | 
						|
    int i = 0;
 | 
						|
    double t = 0;
 | 
						|
    vector<Rect> faces, faces2;
 | 
						|
    const static Scalar colors[] =  { CV_RGB(0,0,255),
 | 
						|
        CV_RGB(0,128,255),
 | 
						|
        CV_RGB(0,255,255),
 | 
						|
        CV_RGB(0,255,0),
 | 
						|
        CV_RGB(255,128,0),
 | 
						|
        CV_RGB(255,255,0),
 | 
						|
        CV_RGB(255,0,0),
 | 
						|
        CV_RGB(255,0,255)} ;
 | 
						|
    Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
 | 
						|
 | 
						|
    cvtColor( img, gray, COLOR_BGR2GRAY );
 | 
						|
    resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
 | 
						|
    equalizeHist( smallImg, smallImg );
 | 
						|
 | 
						|
    t = (double)cvGetTickCount();
 | 
						|
    cascade.detectMultiScale( smallImg, faces,
 | 
						|
        1.1, 2, 0
 | 
						|
        //|CASCADE_FIND_BIGGEST_OBJECT
 | 
						|
        //|CASCADE_DO_ROUGH_SEARCH
 | 
						|
        |CASCADE_SCALE_IMAGE
 | 
						|
        ,
 | 
						|
        Size(30, 30) );
 | 
						|
    if( tryflip )
 | 
						|
    {
 | 
						|
        flip(smallImg, smallImg, 1);
 | 
						|
        cascade.detectMultiScale( smallImg, faces2,
 | 
						|
                                 1.1, 2, 0
 | 
						|
                                 //|CASCADE_FIND_BIGGEST_OBJECT
 | 
						|
                                 //|CASCADE_DO_ROUGH_SEARCH
 | 
						|
                                 |CASCADE_SCALE_IMAGE
 | 
						|
                                 ,
 | 
						|
                                 Size(30, 30) );
 | 
						|
        for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
 | 
						|
        {
 | 
						|
            faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    t = (double)cvGetTickCount() - t;
 | 
						|
    printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
 | 
						|
    for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
 | 
						|
    {
 | 
						|
        Mat smallImgROI;
 | 
						|
        vector<Rect> nestedObjects;
 | 
						|
        Point center;
 | 
						|
        Scalar color = colors[i%8];
 | 
						|
        int radius;
 | 
						|
 | 
						|
        double aspect_ratio = (double)r->width/r->height;
 | 
						|
        if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
 | 
						|
        {
 | 
						|
            center.x = cvRound((r->x + r->width*0.5)*scale);
 | 
						|
            center.y = cvRound((r->y + r->height*0.5)*scale);
 | 
						|
            radius = cvRound((r->width + r->height)*0.25*scale);
 | 
						|
            circle( img, center, radius, color, 3, 8, 0 );
 | 
						|
        }
 | 
						|
        else
 | 
						|
            rectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)),
 | 
						|
                       cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)),
 | 
						|
                       color, 3, 8, 0);
 | 
						|
        if( nestedCascade.empty() )
 | 
						|
            continue;
 | 
						|
        smallImgROI = smallImg(*r);
 | 
						|
        nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
 | 
						|
            1.1, 2, 0
 | 
						|
            //|CASCADE_FIND_BIGGEST_OBJECT
 | 
						|
            //|CASCADE_DO_ROUGH_SEARCH
 | 
						|
            //|CASCADE_DO_CANNY_PRUNING
 | 
						|
            |CASCADE_SCALE_IMAGE
 | 
						|
            ,
 | 
						|
            Size(30, 30) );
 | 
						|
        for( vector<Rect>::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ )
 | 
						|
        {
 | 
						|
            center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);
 | 
						|
            center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);
 | 
						|
            radius = cvRound((nr->width + nr->height)*0.25*scale);
 | 
						|
            circle( img, center, radius, color, 3, 8, 0 );
 | 
						|
        }
 | 
						|
    }
 | 
						|
    cv::imshow( "result", img );
 | 
						|
}
 |