350 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			350 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | ||
| //
 | ||
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | ||
| //
 | ||
| //  By downloading, copying, installing or using the software you agree to this license.
 | ||
| //  If you do not agree to this license, do not download, install,
 | ||
| //  copy or use the software.
 | ||
| //
 | ||
| //
 | ||
| //                           License Agreement
 | ||
| //                For Open Source Computer Vision Library
 | ||
| //
 | ||
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | ||
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | ||
| // Third party copyrights are property of their respective owners.
 | ||
| //
 | ||
| // Redistribution and use in source and binary forms, with or without modification,
 | ||
| // are permitted provided that the following conditions are met:
 | ||
| //
 | ||
| //   * Redistribution's of source code must retain the above copyright notice,
 | ||
| //     this list of conditions and the following disclaimer.
 | ||
| //
 | ||
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | ||
| //     this list of conditions and the following disclaimer in the documentation
 | ||
| //     and/or other materials provided with the distribution.
 | ||
| //
 | ||
| //   * The name of the copyright holders may not be used to endorse or promote products
 | ||
| //     derived from this software without specific prior written permission.
 | ||
| //
 | ||
| // This software is provided by the copyright holders and contributors "as is" and
 | ||
| // any express or implied warranties, including, but not limited to, the implied
 | ||
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | ||
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | ||
| // indirect, incidental, special, exemplary, or consequential damages
 | ||
| // (including, but not limited to, procurement of substitute goods or services;
 | ||
| // loss of use, data, or profits; or business interruption) however caused
 | ||
| // and on any theory of liability, whether in contract, strict liability,
 | ||
| // or tort (including negligence or otherwise) arising in any way out of
 | ||
| // the use of this software, even if advised of the possibility of such damage.
 | ||
| //
 | ||
| //M*/
 | ||
| 
 | ||
| #ifndef __OPENCV_CUDAOPTFLOW_HPP__
 | ||
| #define __OPENCV_CUDAOPTFLOW_HPP__
 | ||
| 
 | ||
| #ifndef __cplusplus
 | ||
| #  error cudaoptflow.hpp header must be compiled as C++
 | ||
| #endif
 | ||
| 
 | ||
| #include "opencv2/core/cuda.hpp"
 | ||
| 
 | ||
| /**
 | ||
|   @addtogroup cuda
 | ||
|   @{
 | ||
|     @defgroup cudaoptflow Optical Flow
 | ||
|   @}
 | ||
|  */
 | ||
| 
 | ||
| namespace cv { namespace cuda {
 | ||
| 
 | ||
| //! @addtogroup cudaoptflow
 | ||
| //! @{
 | ||
| 
 | ||
| //
 | ||
| // Interface
 | ||
| //
 | ||
| 
 | ||
| /** @brief Base interface for dense optical flow algorithms.
 | ||
|  */
 | ||
| class CV_EXPORTS DenseOpticalFlow : public Algorithm
 | ||
| {
 | ||
| public:
 | ||
|     /** @brief Calculates a dense optical flow.
 | ||
| 
 | ||
|     @param I0 first input image.
 | ||
|     @param I1 second input image of the same size and the same type as I0.
 | ||
|     @param flow computed flow image that has the same size as I0 and type CV_32FC2.
 | ||
|     @param stream Stream for the asynchronous version.
 | ||
|      */
 | ||
|     virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream = Stream::Null()) = 0;
 | ||
| };
 | ||
| 
 | ||
| /** @brief Base interface for sparse optical flow algorithms.
 | ||
|  */
 | ||
| class CV_EXPORTS SparseOpticalFlow : public Algorithm
 | ||
| {
 | ||
| public:
 | ||
|     /** @brief Calculates a sparse optical flow.
 | ||
| 
 | ||
|     @param prevImg First input image.
 | ||
|     @param nextImg Second input image of the same size and the same type as prevImg.
 | ||
|     @param prevPts Vector of 2D points for which the flow needs to be found.
 | ||
|     @param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image.
 | ||
|     @param status Output status vector. Each element of the vector is set to 1 if the
 | ||
|                   flow for the corresponding features has been found. Otherwise, it is set to 0.
 | ||
|     @param err Optional output vector that contains error response for each point (inverse confidence).
 | ||
|     @param stream Stream for the asynchronous version.
 | ||
|      */
 | ||
|     virtual void calc(InputArray prevImg, InputArray nextImg,
 | ||
|                       InputArray prevPts, InputOutputArray nextPts,
 | ||
|                       OutputArray status,
 | ||
|                       OutputArray err = cv::noArray(),
 | ||
|                       Stream& stream = Stream::Null()) = 0;
 | ||
| };
 | ||
| 
 | ||
| //
 | ||
| // BroxOpticalFlow
 | ||
| //
 | ||
| 
 | ||
| /** @brief Class computing the optical flow for two images using Brox et al Optical Flow algorithm (@cite Brox2004).
 | ||
|  */
 | ||
| class CV_EXPORTS BroxOpticalFlow : public DenseOpticalFlow
 | ||
| {
 | ||
| public:
 | ||
|     virtual double getFlowSmoothness() const = 0;
 | ||
|     virtual void setFlowSmoothness(double alpha) = 0;
 | ||
| 
 | ||
|     virtual double getGradientConstancyImportance() const = 0;
 | ||
|     virtual void setGradientConstancyImportance(double gamma) = 0;
 | ||
| 
 | ||
|     virtual double getPyramidScaleFactor() const = 0;
 | ||
|     virtual void setPyramidScaleFactor(double scale_factor) = 0;
 | ||
| 
 | ||
|     //! number of lagged non-linearity iterations (inner loop)
 | ||
|     virtual int getInnerIterations() const = 0;
 | ||
|     virtual void setInnerIterations(int inner_iterations) = 0;
 | ||
| 
 | ||
|     //! number of warping iterations (number of pyramid levels)
 | ||
|     virtual int getOuterIterations() const = 0;
 | ||
|     virtual void setOuterIterations(int outer_iterations) = 0;
 | ||
| 
 | ||
|     //! number of linear system solver iterations
 | ||
|     virtual int getSolverIterations() const = 0;
 | ||
|     virtual void setSolverIterations(int solver_iterations) = 0;
 | ||
| 
 | ||
|     static Ptr<BroxOpticalFlow> create(
 | ||
|             double alpha = 0.197,
 | ||
|             double gamma = 50.0,
 | ||
|             double scale_factor = 0.8,
 | ||
|             int inner_iterations = 5,
 | ||
|             int outer_iterations = 150,
 | ||
|             int solver_iterations = 10);
 | ||
| };
 | ||
| 
 | ||
| //
 | ||
| // PyrLKOpticalFlow
 | ||
| //
 | ||
| 
 | ||
| /** @brief Class used for calculating a sparse optical flow.
 | ||
| 
 | ||
| The class can calculate an optical flow for a sparse feature set using the
 | ||
| iterative Lucas-Kanade method with pyramids.
 | ||
| 
 | ||
| @sa calcOpticalFlowPyrLK
 | ||
| 
 | ||
| @note
 | ||
|    -   An example of the Lucas Kanade optical flow algorithm can be found at
 | ||
|         opencv_source_code/samples/gpu/pyrlk_optical_flow.cpp
 | ||
|  */
 | ||
| class CV_EXPORTS SparsePyrLKOpticalFlow : public SparseOpticalFlow
 | ||
| {
 | ||
| public:
 | ||
|     virtual Size getWinSize() const = 0;
 | ||
|     virtual void setWinSize(Size winSize) = 0;
 | ||
| 
 | ||
|     virtual int getMaxLevel() const = 0;
 | ||
|     virtual void setMaxLevel(int maxLevel) = 0;
 | ||
| 
 | ||
|     virtual int getNumIters() const = 0;
 | ||
|     virtual void setNumIters(int iters) = 0;
 | ||
| 
 | ||
|     virtual bool getUseInitialFlow() const = 0;
 | ||
|     virtual void setUseInitialFlow(bool useInitialFlow) = 0;
 | ||
| 
 | ||
|     static Ptr<SparsePyrLKOpticalFlow> create(
 | ||
|             Size winSize = Size(21, 21),
 | ||
|             int maxLevel = 3,
 | ||
|             int iters = 30,
 | ||
|             bool useInitialFlow = false);
 | ||
| };
 | ||
| 
 | ||
| /** @brief Class used for calculating a dense optical flow.
 | ||
| 
 | ||
| The class can calculate an optical flow for a dense optical flow using the
 | ||
| iterative Lucas-Kanade method with pyramids.
 | ||
|  */
 | ||
| class CV_EXPORTS DensePyrLKOpticalFlow : public DenseOpticalFlow
 | ||
| {
 | ||
| public:
 | ||
|     virtual Size getWinSize() const = 0;
 | ||
|     virtual void setWinSize(Size winSize) = 0;
 | ||
| 
 | ||
|     virtual int getMaxLevel() const = 0;
 | ||
|     virtual void setMaxLevel(int maxLevel) = 0;
 | ||
| 
 | ||
|     virtual int getNumIters() const = 0;
 | ||
|     virtual void setNumIters(int iters) = 0;
 | ||
| 
 | ||
|     virtual bool getUseInitialFlow() const = 0;
 | ||
|     virtual void setUseInitialFlow(bool useInitialFlow) = 0;
 | ||
| 
 | ||
|     static Ptr<DensePyrLKOpticalFlow> create(
 | ||
|             Size winSize = Size(13, 13),
 | ||
|             int maxLevel = 3,
 | ||
|             int iters = 30,
 | ||
|             bool useInitialFlow = false);
 | ||
| };
 | ||
| 
 | ||
| //
 | ||
| // FarnebackOpticalFlow
 | ||
| //
 | ||
| 
 | ||
| /** @brief Class computing a dense optical flow using the Gunnar Farneback’s algorithm.
 | ||
|  */
 | ||
| class CV_EXPORTS FarnebackOpticalFlow : public DenseOpticalFlow
 | ||
| {
 | ||
| public:
 | ||
|     virtual int getNumLevels() const = 0;
 | ||
|     virtual void setNumLevels(int numLevels) = 0;
 | ||
| 
 | ||
|     virtual double getPyrScale() const = 0;
 | ||
|     virtual void setPyrScale(double pyrScale) = 0;
 | ||
| 
 | ||
|     virtual bool getFastPyramids() const = 0;
 | ||
|     virtual void setFastPyramids(bool fastPyramids) = 0;
 | ||
| 
 | ||
|     virtual int getWinSize() const = 0;
 | ||
|     virtual void setWinSize(int winSize) = 0;
 | ||
| 
 | ||
|     virtual int getNumIters() const = 0;
 | ||
|     virtual void setNumIters(int numIters) = 0;
 | ||
| 
 | ||
|     virtual int getPolyN() const = 0;
 | ||
|     virtual void setPolyN(int polyN) = 0;
 | ||
| 
 | ||
|     virtual double getPolySigma() const = 0;
 | ||
|     virtual void setPolySigma(double polySigma) = 0;
 | ||
| 
 | ||
|     virtual int getFlags() const = 0;
 | ||
|     virtual void setFlags(int flags) = 0;
 | ||
| 
 | ||
|     static Ptr<FarnebackOpticalFlow> create(
 | ||
|             int numLevels = 5,
 | ||
|             double pyrScale = 0.5,
 | ||
|             bool fastPyramids = false,
 | ||
|             int winSize = 13,
 | ||
|             int numIters = 10,
 | ||
|             int polyN = 5,
 | ||
|             double polySigma = 1.1,
 | ||
|             int flags = 0);
 | ||
| };
 | ||
| 
 | ||
| //
 | ||
| // OpticalFlowDual_TVL1
 | ||
| //
 | ||
| 
 | ||
| /** @brief Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method.
 | ||
|  *
 | ||
|  * @sa C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
 | ||
|  * @sa Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
 | ||
|  */
 | ||
| class CV_EXPORTS OpticalFlowDual_TVL1 : public DenseOpticalFlow
 | ||
| {
 | ||
| public:
 | ||
|     /**
 | ||
|      * Time step of the numerical scheme.
 | ||
|      */
 | ||
|     virtual double getTau() const = 0;
 | ||
|     virtual void setTau(double tau) = 0;
 | ||
| 
 | ||
|     /**
 | ||
|      * Weight parameter for the data term, attachment parameter.
 | ||
|      * This is the most relevant parameter, which determines the smoothness of the output.
 | ||
|      * The smaller this parameter is, the smoother the solutions we obtain.
 | ||
|      * It depends on the range of motions of the images, so its value should be adapted to each image sequence.
 | ||
|      */
 | ||
|     virtual double getLambda() const = 0;
 | ||
|     virtual void setLambda(double lambda) = 0;
 | ||
| 
 | ||
|     /**
 | ||
|      * Weight parameter for (u - v)^2, tightness parameter.
 | ||
|      * It serves as a link between the attachment and the regularization terms.
 | ||
|      * In theory, it should have a small value in order to maintain both parts in correspondence.
 | ||
|      * The method is stable for a large range of values of this parameter.
 | ||
|      */
 | ||
|     virtual double getGamma() const = 0;
 | ||
|     virtual void setGamma(double gamma) = 0;
 | ||
| 
 | ||
|     /**
 | ||
|      * parameter used for motion estimation. It adds a variable allowing for illumination variations
 | ||
|      * Set this parameter to 1. if you have varying illumination.
 | ||
|      * See: Chambolle et al, A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging
 | ||
|      * Journal of Mathematical imaging and vision, may 2011 Vol 40 issue 1, pp 120-145
 | ||
|      */
 | ||
|     virtual double getTheta() const = 0;
 | ||
|     virtual void setTheta(double theta) = 0;
 | ||
| 
 | ||
|     /**
 | ||
|      * Number of scales used to create the pyramid of images.
 | ||
|      */
 | ||
|     virtual int getNumScales() const = 0;
 | ||
|     virtual void setNumScales(int nscales) = 0;
 | ||
| 
 | ||
|     /**
 | ||
|      * Number of warpings per scale.
 | ||
|      * Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
 | ||
|      * This is a parameter that assures the stability of the method.
 | ||
|      * It also affects the running time, so it is a compromise between speed and accuracy.
 | ||
|      */
 | ||
|     virtual int getNumWarps() const = 0;
 | ||
|     virtual void setNumWarps(int warps) = 0;
 | ||
| 
 | ||
|     /**
 | ||
|      * Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
 | ||
|      * A small value will yield more accurate solutions at the expense of a slower convergence.
 | ||
|      */
 | ||
|     virtual double getEpsilon() const = 0;
 | ||
|     virtual void setEpsilon(double epsilon) = 0;
 | ||
| 
 | ||
|     /**
 | ||
|      * Stopping criterion iterations number used in the numerical scheme.
 | ||
|      */
 | ||
|     virtual int getNumIterations() const = 0;
 | ||
|     virtual void setNumIterations(int iterations) = 0;
 | ||
| 
 | ||
|     virtual double getScaleStep() const = 0;
 | ||
|     virtual void setScaleStep(double scaleStep) = 0;
 | ||
| 
 | ||
|     virtual bool getUseInitialFlow() const = 0;
 | ||
|     virtual void setUseInitialFlow(bool useInitialFlow) = 0;
 | ||
| 
 | ||
|     static Ptr<OpticalFlowDual_TVL1> create(
 | ||
|             double tau = 0.25,
 | ||
|             double lambda = 0.15,
 | ||
|             double theta = 0.3,
 | ||
|             int nscales = 5,
 | ||
|             int warps = 5,
 | ||
|             double epsilon = 0.01,
 | ||
|             int iterations = 300,
 | ||
|             double scaleStep = 0.8,
 | ||
|             double gamma = 0.0,
 | ||
|             bool useInitialFlow = false);
 | ||
| };
 | ||
| 
 | ||
| //! @}
 | ||
| 
 | ||
| }} // namespace cv { namespace cuda {
 | ||
| 
 | ||
| #endif /* __OPENCV_CUDAOPTFLOW_HPP__ */
 | 
