317 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
			
		
		
	
	
			317 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
| Object Detection
 | |
| ================
 | |
| 
 | |
| .. highlight:: cpp
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::HOGDescriptor
 | |
| ------------------
 | |
| .. ocv:struct:: gpu::HOGDescriptor
 | |
| 
 | |
| The class implements Histogram of Oriented Gradients ([Dalal2005]_) object detector. ::
 | |
| 
 | |
|     struct CV_EXPORTS HOGDescriptor
 | |
|     {
 | |
|         enum { DEFAULT_WIN_SIGMA = -1 };
 | |
|         enum { DEFAULT_NLEVELS = 64 };
 | |
|         enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
 | |
| 
 | |
|         HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
 | |
|                       Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
 | |
|                       int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
 | |
|                       double threshold_L2hys=0.2, bool gamma_correction=true,
 | |
|                       int nlevels=DEFAULT_NLEVELS);
 | |
| 
 | |
|         size_t getDescriptorSize() const;
 | |
|         size_t getBlockHistogramSize() const;
 | |
| 
 | |
|         void setSVMDetector(const vector<float>& detector);
 | |
| 
 | |
|         static vector<float> getDefaultPeopleDetector();
 | |
|         static vector<float> getPeopleDetector48x96();
 | |
|         static vector<float> getPeopleDetector64x128();
 | |
| 
 | |
|         void detect(const GpuMat& img, vector<Point>& found_locations,
 | |
|                     double hit_threshold=0, Size win_stride=Size(),
 | |
|                     Size padding=Size());
 | |
| 
 | |
|         void detectMultiScale(const GpuMat& img, vector<Rect>& found_locations,
 | |
|                               double hit_threshold=0, Size win_stride=Size(),
 | |
|                               Size padding=Size(), double scale0=1.05,
 | |
|                               int group_threshold=2);
 | |
| 
 | |
|         void getDescriptors(const GpuMat& img, Size win_stride,
 | |
|                             GpuMat& descriptors,
 | |
|                             int descr_format=DESCR_FORMAT_COL_BY_COL);
 | |
| 
 | |
|         Size win_size;
 | |
|         Size block_size;
 | |
|         Size block_stride;
 | |
|         Size cell_size;
 | |
|         int nbins;
 | |
|         double win_sigma;
 | |
|         double threshold_L2hys;
 | |
|         bool gamma_correction;
 | |
|         int nlevels;
 | |
| 
 | |
|     private:
 | |
|         // Hidden
 | |
|     }
 | |
| 
 | |
| 
 | |
| Interfaces of all methods are kept similar to the ``CPU HOG`` descriptor and detector analogues as much as possible.
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::HOGDescriptor::HOGDescriptor
 | |
| -------------------------------------
 | |
| Creates the ``HOG`` descriptor and detector.
 | |
| 
 | |
| .. ocv:function:: gpu::HOGDescriptor::HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16), Size block_stride=Size(8, 8), Size cell_size=Size(8, 8), int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA, double threshold_L2hys=0.2, bool gamma_correction=true, int nlevels=DEFAULT_NLEVELS)
 | |
| 
 | |
|    :param win_size: Detection window size. Align to block size and block stride.
 | |
| 
 | |
|    :param block_size: Block size in pixels. Align to cell size. Only (16,16) is supported for now.
 | |
| 
 | |
|    :param block_stride: Block stride. It must be a multiple of cell size.
 | |
| 
 | |
|    :param cell_size: Cell size. Only (8, 8) is supported for now.
 | |
| 
 | |
|    :param nbins: Number of bins. Only 9 bins per cell are supported for now.
 | |
| 
 | |
|    :param win_sigma: Gaussian smoothing window parameter.
 | |
| 
 | |
|    :param threshold_L2hys: L2-Hys normalization method shrinkage.
 | |
| 
 | |
|    :param gamma_correction: Flag to specify whether the gamma correction preprocessing is required or not.
 | |
| 
 | |
|    :param nlevels: Maximum number of detection window increases.
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::HOGDescriptor::getDescriptorSize
 | |
| -----------------------------------------
 | |
| Returns the number of coefficients required for the classification.
 | |
| 
 | |
| .. ocv:function:: size_t gpu::HOGDescriptor::getDescriptorSize() const
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::HOGDescriptor::getBlockHistogramSize
 | |
| ---------------------------------------------
 | |
| Returns the block histogram size.
 | |
| 
 | |
| .. ocv:function:: size_t gpu::HOGDescriptor::getBlockHistogramSize() const
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::HOGDescriptor::setSVMDetector
 | |
| --------------------------------------
 | |
| Sets coefficients for the linear SVM classifier.
 | |
| 
 | |
| .. ocv:function:: void gpu::HOGDescriptor::setSVMDetector(const vector<float>& detector)
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::HOGDescriptor::getDefaultPeopleDetector
 | |
| ------------------------------------------------
 | |
| Returns coefficients of the classifier trained for people detection (for default window size).
 | |
| 
 | |
| .. ocv:function:: static vector<float> gpu::HOGDescriptor::getDefaultPeopleDetector()
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::HOGDescriptor::getPeopleDetector48x96
 | |
| ----------------------------------------------
 | |
| Returns coefficients of the classifier trained for people detection (for 48x96 windows).
 | |
| 
 | |
| .. ocv:function:: static vector<float> gpu::HOGDescriptor::getPeopleDetector48x96()
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::HOGDescriptor::getPeopleDetector64x128
 | |
| -----------------------------------------------
 | |
| Returns coefficients of the classifier trained for people detection (for 64x128 windows).
 | |
| 
 | |
| .. ocv:function:: static vector<float> gpu::HOGDescriptor::getPeopleDetector64x128()
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::HOGDescriptor::detect
 | |
| ------------------------------
 | |
| Performs object detection without a multi-scale window.
 | |
| 
 | |
| .. ocv:function:: void gpu::HOGDescriptor::detect(const GpuMat& img, vector<Point>& found_locations, double hit_threshold=0, Size win_stride=Size(), Size padding=Size())
 | |
| 
 | |
|    :param img: Source image.  ``CV_8UC1``  and  ``CV_8UC4`` types are supported for now.
 | |
| 
 | |
|    :param found_locations: Left-top corner points of detected objects boundaries.
 | |
| 
 | |
|    :param hit_threshold: Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specfied in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
 | |
| 
 | |
|    :param win_stride: Window stride. It must be a multiple of block stride.
 | |
| 
 | |
|    :param padding: Mock parameter to keep the CPU interface compatibility. It must be (0,0).
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::HOGDescriptor::detectMultiScale
 | |
| ----------------------------------------
 | |
| Performs object detection with a multi-scale window.
 | |
| 
 | |
| .. ocv:function:: void gpu::HOGDescriptor::detectMultiScale(const GpuMat& img, vector<Rect>& found_locations, double hit_threshold=0, Size win_stride=Size(), Size padding=Size(), double scale0=1.05, int group_threshold=2)
 | |
| 
 | |
|    :param img: Source image. See  :ocv:func:`gpu::HOGDescriptor::detect`  for type limitations.
 | |
| 
 | |
|    :param found_locations: Detected objects boundaries.
 | |
| 
 | |
|    :param hit_threshold: Threshold for the distance between features and SVM classifying plane. See  :ocv:func:`gpu::HOGDescriptor::detect`  for details.
 | |
| 
 | |
|    :param win_stride: Window stride. It must be a multiple of block stride.
 | |
| 
 | |
|    :param padding: Mock parameter to keep the CPU interface compatibility. It must be (0,0).
 | |
| 
 | |
|    :param scale0: Coefficient of the detection window increase.
 | |
| 
 | |
|    :param group_threshold: Coefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping. See  :ocv:func:`groupRectangles` .
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::HOGDescriptor::getDescriptors
 | |
| --------------------------------------
 | |
| Returns block descriptors computed for the whole image.
 | |
| 
 | |
| .. ocv:function:: void gpu::HOGDescriptor::getDescriptors(const GpuMat& img, Size win_stride, GpuMat& descriptors, int descr_format=DESCR_FORMAT_COL_BY_COL)
 | |
| 
 | |
|    :param img: Source image. See  :ocv:func:`gpu::HOGDescriptor::detect`  for type limitations.
 | |
| 
 | |
|    :param win_stride: Window stride. It must be a multiple of block stride.
 | |
| 
 | |
|    :param descriptors: 2D array of descriptors.
 | |
| 
 | |
|    :param descr_format: Descriptor storage format:
 | |
| 
 | |
|         * **DESCR_FORMAT_ROW_BY_ROW** - Row-major order.
 | |
| 
 | |
|         * **DESCR_FORMAT_COL_BY_COL** - Column-major order.
 | |
| 
 | |
| The function is mainly used to learn the classifier.
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::CascadeClassifier_GPU
 | |
| --------------------------
 | |
| .. ocv:class:: gpu::CascadeClassifier_GPU
 | |
| 
 | |
| Cascade classifier class used for object detection. Supports HAAR and LBP cascades. ::
 | |
| 
 | |
|     class CV_EXPORTS CascadeClassifier_GPU
 | |
|     {
 | |
|     public:
 | |
|             CascadeClassifier_GPU();
 | |
|             CascadeClassifier_GPU(const string& filename);
 | |
|             ~CascadeClassifier_GPU();
 | |
| 
 | |
|             bool empty() const;
 | |
|             bool load(const string& filename);
 | |
|             void release();
 | |
| 
 | |
|             /* Returns number of detected objects */
 | |
|             int detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor=1.2, int minNeighbors=4, Size minSize=Size());
 | |
|             int detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4);
 | |
| 
 | |
|             /* Finds only the largest object. Special mode if training is required.*/
 | |
|             bool findLargestObject;
 | |
| 
 | |
|             /* Draws rectangles in input image */
 | |
|             bool visualizeInPlace;
 | |
| 
 | |
|             Size getClassifierSize() const;
 | |
|     };
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::CascadeClassifier_GPU::CascadeClassifier_GPU
 | |
| -----------------------------------------------------
 | |
| Loads the classifier from a file. Cascade type is detected automatically by constructor parameter.
 | |
| 
 | |
| .. ocv:function:: gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string& filename)
 | |
| 
 | |
|     :param filename: Name of the file from which the classifier is loaded. Only the old ``haar`` classifier (trained by the ``haar`` training application) and NVIDIA's ``nvbin`` are supported for HAAR and only new type of OpenCV XML cascade supported for LBP.
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::CascadeClassifier_GPU::empty
 | |
| -------------------------------------
 | |
| Checks whether the classifier is loaded or not.
 | |
| 
 | |
| .. ocv:function:: bool gpu::CascadeClassifier_GPU::empty() const
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::CascadeClassifier_GPU::load
 | |
| ------------------------------------
 | |
| Loads the classifier from a file. The previous content is destroyed.
 | |
| 
 | |
| .. ocv:function:: bool gpu::CascadeClassifier_GPU::load(const string& filename)
 | |
| 
 | |
|     :param filename: Name of the file from which the classifier is loaded. Only the old ``haar`` classifier (trained by the ``haar`` training application) and NVIDIA's ``nvbin`` are supported for HAAR and only new type of OpenCV XML cascade supported for LBP.
 | |
| 
 | |
| 
 | |
| gpu::CascadeClassifier_GPU::release
 | |
| ---------------------------------------
 | |
| Destroys the loaded classifier.
 | |
| 
 | |
| .. ocv:function:: void gpu::CascadeClassifier_GPU::release()
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::CascadeClassifier_GPU::detectMultiScale
 | |
| ------------------------------------------------
 | |
| Detects objects of different sizes in the input image.
 | |
| 
 | |
| .. ocv:function:: int gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor=1.1, int minNeighbors=4, Size minSize=Size() )
 | |
| 
 | |
|     :param image: Matrix of type  ``CV_8U``  containing an image where objects should be detected.
 | |
| 
 | |
|     :param objectsBuf: Buffer to store detected objects (rectangles). If it is empty, it is allocated with the default size. If not empty, the function searches not more than N objects, where ``N = sizeof(objectsBufer's data)/sizeof(cv::Rect)``.
 | |
| 
 | |
|     :param maxObjectSize: Maximum possible object size. Objects larger than that are ignored. Used for second signature and supported only for LBP cascades.
 | |
| 
 | |
|     :param scaleFactor:  Parameter specifying how much the image size is reduced at each image scale.
 | |
| 
 | |
|     :param minNeighbors: Parameter specifying how many neighbors each candidate rectangle should have to retain it.
 | |
| 
 | |
|     :param minSize: Minimum possible object size. Objects smaller than that are ignored.
 | |
| 
 | |
| The detected objects are returned as a list of rectangles.
 | |
| 
 | |
| The function returns the number of detected objects, so you can retrieve them as in the following example: ::
 | |
| 
 | |
|     gpu::CascadeClassifier_GPU cascade_gpu(...);
 | |
| 
 | |
|     Mat image_cpu = imread(...)
 | |
|     GpuMat image_gpu(image_cpu);
 | |
| 
 | |
|     GpuMat objbuf;
 | |
|     int detections_number = cascade_gpu.detectMultiScale( image_gpu,
 | |
|               objbuf, 1.2, minNeighbors);
 | |
| 
 | |
|     Mat obj_host;
 | |
|     // download only detected number of rectangles
 | |
|     objbuf.colRange(0, detections_number).download(obj_host);
 | |
| 
 | |
|     Rect* faces = obj_host.ptr<Rect>();
 | |
|     for(int i = 0; i < detections_num; ++i)
 | |
|        cv::rectangle(image_cpu, faces[i], Scalar(255));
 | |
| 
 | |
|     imshow("Faces", image_cpu);
 | |
| 
 | |
| 
 | |
| .. seealso:: :ocv:func:`CascadeClassifier::detectMultiScale`
 | |
| 
 | |
| 
 | |
| 
 | |
| .. [Dalal2005] Navneet Dalal and Bill Triggs. *Histogram of oriented gradients for human detection*. 2005.
 | 
