802 lines
24 KiB
C++
802 lines
24 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencv2/core/opencl/ocl_defs.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::cuda;
|
|
using namespace cv::superres;
|
|
using namespace cv::superres::detail;
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// CpuOpticalFlow
|
|
|
|
namespace
|
|
{
|
|
class CpuOpticalFlow : public virtual cv::superres::DenseOpticalFlowExt
|
|
{
|
|
public:
|
|
explicit CpuOpticalFlow(int work_type);
|
|
|
|
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
|
|
void collectGarbage();
|
|
|
|
protected:
|
|
virtual void impl(InputArray input0, InputArray input1, OutputArray dst) = 0;
|
|
|
|
private:
|
|
bool ocl_calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
|
|
|
|
int work_type_;
|
|
|
|
// Mat
|
|
Mat buf_[6];
|
|
Mat flow_;
|
|
Mat flows_[2];
|
|
|
|
// UMat
|
|
UMat ubuf_[6];
|
|
UMat uflow_;
|
|
std::vector<UMat> uflows_;
|
|
};
|
|
|
|
CpuOpticalFlow::CpuOpticalFlow(int work_type) :
|
|
work_type_(work_type)
|
|
{
|
|
}
|
|
|
|
bool CpuOpticalFlow::ocl_calc(InputArray _frame0, InputArray _frame1, OutputArray _flow1, OutputArray _flow2)
|
|
{
|
|
UMat frame0 = arrGetUMat(_frame0, ubuf_[0]);
|
|
UMat frame1 = arrGetUMat(_frame1, ubuf_[1]);
|
|
|
|
CV_Assert( frame1.type() == frame0.type() );
|
|
CV_Assert( frame1.size() == frame0.size() );
|
|
|
|
UMat input0 = convertToType(frame0, work_type_, ubuf_[2], ubuf_[3]);
|
|
UMat input1 = convertToType(frame1, work_type_, ubuf_[4], ubuf_[5]);
|
|
|
|
if (!_flow2.needed())
|
|
{
|
|
impl(input0, input1, _flow1);
|
|
return true;
|
|
}
|
|
|
|
impl(input0, input1, uflow_);
|
|
|
|
if (!_flow2.needed())
|
|
arrCopy(uflow_, _flow1);
|
|
else
|
|
{
|
|
split(uflow_, uflows_);
|
|
|
|
arrCopy(uflows_[0], _flow1);
|
|
arrCopy(uflows_[1], _flow2);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void CpuOpticalFlow::calc(InputArray _frame0, InputArray _frame1, OutputArray _flow1, OutputArray _flow2)
|
|
{
|
|
CV_OCL_RUN(_flow1.isUMat() && (_flow2.isUMat() || !_flow2.needed()),
|
|
ocl_calc(_frame0, _frame1, _flow1, _flow2))
|
|
|
|
Mat frame0 = arrGetMat(_frame0, buf_[0]);
|
|
Mat frame1 = arrGetMat(_frame1, buf_[1]);
|
|
|
|
CV_Assert( frame1.type() == frame0.type() );
|
|
CV_Assert( frame1.size() == frame0.size() );
|
|
|
|
Mat input0 = convertToType(frame0, work_type_, buf_[2], buf_[3]);
|
|
Mat input1 = convertToType(frame1, work_type_, buf_[4], buf_[5]);
|
|
|
|
if (!_flow2.needed() && _flow1.kind() < _InputArray::OPENGL_BUFFER)
|
|
{
|
|
impl(input0, input1, _flow1);
|
|
return;
|
|
}
|
|
|
|
impl(input0, input1, flow_);
|
|
|
|
if (!_flow2.needed())
|
|
arrCopy(flow_, _flow1);
|
|
else
|
|
{
|
|
split(flow_, flows_);
|
|
|
|
arrCopy(flows_[0], _flow1);
|
|
arrCopy(flows_[1], _flow2);
|
|
}
|
|
}
|
|
|
|
void CpuOpticalFlow::collectGarbage()
|
|
{
|
|
// Mat
|
|
for (int i = 0; i < 6; ++i)
|
|
buf_[i].release();
|
|
flow_.release();
|
|
flows_[0].release();
|
|
flows_[1].release();
|
|
|
|
// UMat
|
|
for (int i = 0; i < 6; ++i)
|
|
ubuf_[i].release();
|
|
uflow_.release();
|
|
uflows_[0].release();
|
|
uflows_[1].release();
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// Farneback
|
|
|
|
namespace
|
|
{
|
|
class Farneback : public CpuOpticalFlow, public cv::superres::FarnebackOpticalFlow
|
|
{
|
|
public:
|
|
Farneback();
|
|
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
|
|
void collectGarbage();
|
|
|
|
CV_IMPL_PROPERTY(double, PyrScale, pyrScale_)
|
|
CV_IMPL_PROPERTY(int, LevelsNumber, numLevels_)
|
|
CV_IMPL_PROPERTY(int, WindowSize, winSize_)
|
|
CV_IMPL_PROPERTY(int, Iterations, numIters_)
|
|
CV_IMPL_PROPERTY(int, PolyN, polyN_)
|
|
CV_IMPL_PROPERTY(double, PolySigma, polySigma_)
|
|
CV_IMPL_PROPERTY(int, Flags, flags_)
|
|
|
|
protected:
|
|
void impl(InputArray input0, InputArray input1, OutputArray dst);
|
|
|
|
private:
|
|
double pyrScale_;
|
|
int numLevels_;
|
|
int winSize_;
|
|
int numIters_;
|
|
int polyN_;
|
|
double polySigma_;
|
|
int flags_;
|
|
};
|
|
|
|
Farneback::Farneback() : CpuOpticalFlow(CV_8UC1)
|
|
{
|
|
pyrScale_ = 0.5;
|
|
numLevels_ = 5;
|
|
winSize_ = 13;
|
|
numIters_ = 10;
|
|
polyN_ = 5;
|
|
polySigma_ = 1.1;
|
|
flags_ = 0;
|
|
}
|
|
|
|
void Farneback::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
|
|
{
|
|
CpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
|
|
}
|
|
|
|
void Farneback::collectGarbage()
|
|
{
|
|
CpuOpticalFlow::collectGarbage();
|
|
}
|
|
|
|
void Farneback::impl(InputArray input0, InputArray input1, OutputArray dst)
|
|
{
|
|
calcOpticalFlowFarneback(input0, input1, (InputOutputArray)dst, pyrScale_,
|
|
numLevels_, winSize_, numIters_,
|
|
polyN_, polySigma_, flags_);
|
|
}
|
|
}
|
|
|
|
Ptr<cv::superres::FarnebackOpticalFlow> cv::superres::createOptFlow_Farneback()
|
|
{
|
|
return makePtr<Farneback>();
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// Simple
|
|
|
|
/*
|
|
namespace
|
|
{
|
|
class Simple : public CpuOpticalFlow
|
|
{
|
|
public:
|
|
AlgorithmInfo* info() const;
|
|
|
|
Simple();
|
|
|
|
protected:
|
|
void impl(InputArray input0, InputArray input1, OutputArray dst);
|
|
|
|
private:
|
|
int layers_;
|
|
int averagingBlockSize_;
|
|
int maxFlow_;
|
|
double sigmaDist_;
|
|
double sigmaColor_;
|
|
int postProcessWindow_;
|
|
double sigmaDistFix_;
|
|
double sigmaColorFix_;
|
|
double occThr_;
|
|
int upscaleAveragingRadius_;
|
|
double upscaleSigmaDist_;
|
|
double upscaleSigmaColor_;
|
|
double speedUpThr_;
|
|
};
|
|
|
|
CV_INIT_ALGORITHM(Simple, "DenseOpticalFlowExt.Simple",
|
|
obj.info()->addParam(obj, "layers", obj.layers_);
|
|
obj.info()->addParam(obj, "averagingBlockSize", obj.averagingBlockSize_);
|
|
obj.info()->addParam(obj, "maxFlow", obj.maxFlow_);
|
|
obj.info()->addParam(obj, "sigmaDist", obj.sigmaDist_);
|
|
obj.info()->addParam(obj, "sigmaColor", obj.sigmaColor_);
|
|
obj.info()->addParam(obj, "postProcessWindow", obj.postProcessWindow_);
|
|
obj.info()->addParam(obj, "sigmaDistFix", obj.sigmaDistFix_);
|
|
obj.info()->addParam(obj, "sigmaColorFix", obj.sigmaColorFix_);
|
|
obj.info()->addParam(obj, "occThr", obj.occThr_);
|
|
obj.info()->addParam(obj, "upscaleAveragingRadius", obj.upscaleAveragingRadius_);
|
|
obj.info()->addParam(obj, "upscaleSigmaDist", obj.upscaleSigmaDist_);
|
|
obj.info()->addParam(obj, "upscaleSigmaColor", obj.upscaleSigmaColor_);
|
|
obj.info()->addParam(obj, "speedUpThr", obj.speedUpThr_))
|
|
|
|
Simple::Simple() : CpuOpticalFlow(CV_8UC3)
|
|
{
|
|
layers_ = 3;
|
|
averagingBlockSize_ = 2;
|
|
maxFlow_ = 4;
|
|
sigmaDist_ = 4.1;
|
|
sigmaColor_ = 25.5;
|
|
postProcessWindow_ = 18;
|
|
sigmaDistFix_ = 55.0;
|
|
sigmaColorFix_ = 25.5;
|
|
occThr_ = 0.35;
|
|
upscaleAveragingRadius_ = 18;
|
|
upscaleSigmaDist_ = 55.0;
|
|
upscaleSigmaColor_ = 25.5;
|
|
speedUpThr_ = 10;
|
|
}
|
|
|
|
void Simple::impl(InputArray _input0, InputArray _input1, OutputArray _dst)
|
|
{
|
|
calcOpticalFlowSF(_input0, _input1, _dst,
|
|
layers_,
|
|
averagingBlockSize_,
|
|
maxFlow_,
|
|
sigmaDist_,
|
|
sigmaColor_,
|
|
postProcessWindow_,
|
|
sigmaDistFix_,
|
|
sigmaColorFix_,
|
|
occThr_,
|
|
upscaleAveragingRadius_,
|
|
upscaleSigmaDist_,
|
|
upscaleSigmaColor_,
|
|
speedUpThr_);
|
|
}
|
|
}
|
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Simple()
|
|
{
|
|
return makePtr<Simple>();
|
|
}*/
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// DualTVL1
|
|
|
|
namespace
|
|
{
|
|
class DualTVL1 : public CpuOpticalFlow, public virtual cv::superres::DualTVL1OpticalFlow
|
|
{
|
|
public:
|
|
DualTVL1();
|
|
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
|
|
void collectGarbage();
|
|
|
|
CV_WRAP_SAME_PROPERTY(double, Tau, (*alg_))
|
|
CV_WRAP_SAME_PROPERTY(double, Lambda, (*alg_))
|
|
CV_WRAP_SAME_PROPERTY(double, Theta, (*alg_))
|
|
CV_WRAP_SAME_PROPERTY(int, ScalesNumber, (*alg_))
|
|
CV_WRAP_SAME_PROPERTY(int, WarpingsNumber, (*alg_))
|
|
CV_WRAP_SAME_PROPERTY(double, Epsilon, (*alg_))
|
|
CV_WRAP_PROPERTY(int, Iterations, OuterIterations, (*alg_))
|
|
CV_WRAP_SAME_PROPERTY(bool, UseInitialFlow, (*alg_))
|
|
|
|
protected:
|
|
void impl(InputArray input0, InputArray input1, OutputArray dst);
|
|
|
|
private:
|
|
Ptr<cv::DualTVL1OpticalFlow> alg_;
|
|
};
|
|
|
|
DualTVL1::DualTVL1() : CpuOpticalFlow(CV_8UC1)
|
|
{
|
|
alg_ = cv::createOptFlow_DualTVL1();
|
|
}
|
|
|
|
void DualTVL1::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
|
|
{
|
|
CpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
|
|
}
|
|
|
|
void DualTVL1::impl(InputArray input0, InputArray input1, OutputArray dst)
|
|
{
|
|
alg_->calc(input0, input1, (InputOutputArray)dst);
|
|
}
|
|
|
|
void DualTVL1::collectGarbage()
|
|
{
|
|
alg_->collectGarbage();
|
|
CpuOpticalFlow::collectGarbage();
|
|
}
|
|
}
|
|
|
|
Ptr<cv::superres::DualTVL1OpticalFlow> cv::superres::createOptFlow_DualTVL1()
|
|
{
|
|
return makePtr<DualTVL1>();
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// GpuOpticalFlow
|
|
|
|
#ifndef HAVE_OPENCV_CUDAOPTFLOW
|
|
|
|
Ptr<cv::superres::FarnebackOpticalFlow> cv::superres::createOptFlow_Farneback_CUDA()
|
|
{
|
|
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
|
|
return Ptr<cv::superres::FarnebackOpticalFlow>();
|
|
}
|
|
|
|
Ptr<cv::superres::DualTVL1OpticalFlow> cv::superres::createOptFlow_DualTVL1_CUDA()
|
|
{
|
|
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
|
|
return Ptr<cv::superres::DualTVL1OpticalFlow>();
|
|
}
|
|
|
|
Ptr<cv::superres::BroxOpticalFlow> cv::superres::createOptFlow_Brox_CUDA()
|
|
{
|
|
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
|
|
return Ptr<cv::superres::BroxOpticalFlow>();
|
|
}
|
|
|
|
Ptr<cv::superres::PyrLKOpticalFlow> cv::superres::createOptFlow_PyrLK_CUDA()
|
|
{
|
|
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
|
|
return Ptr<cv::superres::PyrLKOpticalFlow>();
|
|
}
|
|
|
|
#else // HAVE_OPENCV_CUDAOPTFLOW
|
|
|
|
namespace
|
|
{
|
|
class GpuOpticalFlow : public virtual cv::superres::DenseOpticalFlowExt
|
|
{
|
|
public:
|
|
explicit GpuOpticalFlow(int work_type);
|
|
|
|
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
|
|
void collectGarbage();
|
|
|
|
protected:
|
|
virtual void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2) = 0;
|
|
|
|
private:
|
|
int work_type_;
|
|
GpuMat buf_[6];
|
|
GpuMat u_, v_, flow_;
|
|
};
|
|
|
|
GpuOpticalFlow::GpuOpticalFlow(int work_type) : work_type_(work_type)
|
|
{
|
|
}
|
|
|
|
void GpuOpticalFlow::calc(InputArray _frame0, InputArray _frame1, OutputArray _flow1, OutputArray _flow2)
|
|
{
|
|
GpuMat frame0 = arrGetGpuMat(_frame0, buf_[0]);
|
|
GpuMat frame1 = arrGetGpuMat(_frame1, buf_[1]);
|
|
|
|
CV_Assert( frame1.type() == frame0.type() );
|
|
CV_Assert( frame1.size() == frame0.size() );
|
|
|
|
GpuMat input0 = convertToType(frame0, work_type_, buf_[2], buf_[3]);
|
|
GpuMat input1 = convertToType(frame1, work_type_, buf_[4], buf_[5]);
|
|
|
|
if (_flow2.needed() && _flow1.kind() == _InputArray::CUDA_GPU_MAT && _flow2.kind() == _InputArray::CUDA_GPU_MAT)
|
|
{
|
|
impl(input0, input1, _flow1.getGpuMatRef(), _flow2.getGpuMatRef());
|
|
return;
|
|
}
|
|
|
|
impl(input0, input1, u_, v_);
|
|
|
|
if (_flow2.needed())
|
|
{
|
|
arrCopy(u_, _flow1);
|
|
arrCopy(v_, _flow2);
|
|
}
|
|
else
|
|
{
|
|
GpuMat src[] = {u_, v_};
|
|
merge(src, 2, flow_);
|
|
arrCopy(flow_, _flow1);
|
|
}
|
|
}
|
|
|
|
void GpuOpticalFlow::collectGarbage()
|
|
{
|
|
for (int i = 0; i < 6; ++i)
|
|
buf_[i].release();
|
|
u_.release();
|
|
v_.release();
|
|
flow_.release();
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// Brox_CUDA
|
|
|
|
namespace
|
|
{
|
|
class Brox_CUDA : public GpuOpticalFlow, public virtual cv::superres::BroxOpticalFlow
|
|
{
|
|
public:
|
|
Brox_CUDA();
|
|
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
|
|
void collectGarbage();
|
|
|
|
CV_IMPL_PROPERTY(double, Alpha, alpha_)
|
|
CV_IMPL_PROPERTY(double, Gamma, gamma_)
|
|
CV_IMPL_PROPERTY(double, ScaleFactor, scaleFactor_)
|
|
CV_IMPL_PROPERTY(int, InnerIterations, innerIterations_)
|
|
CV_IMPL_PROPERTY(int, OuterIterations, outerIterations_)
|
|
CV_IMPL_PROPERTY(int, SolverIterations, solverIterations_)
|
|
|
|
protected:
|
|
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
|
|
|
|
private:
|
|
double alpha_;
|
|
double gamma_;
|
|
double scaleFactor_;
|
|
int innerIterations_;
|
|
int outerIterations_;
|
|
int solverIterations_;
|
|
|
|
Ptr<cuda::BroxOpticalFlow> alg_;
|
|
};
|
|
|
|
Brox_CUDA::Brox_CUDA() : GpuOpticalFlow(CV_32FC1)
|
|
{
|
|
alg_ = cuda::BroxOpticalFlow::create(0.197f, 50.0f, 0.8f, 10, 77, 10);
|
|
|
|
alpha_ = alg_->getFlowSmoothness();
|
|
gamma_ = alg_->getGradientConstancyImportance();
|
|
scaleFactor_ = alg_->getPyramidScaleFactor();
|
|
innerIterations_ = alg_->getInnerIterations();
|
|
outerIterations_ = alg_->getOuterIterations();
|
|
solverIterations_ = alg_->getSolverIterations();
|
|
}
|
|
|
|
void Brox_CUDA::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
|
|
{
|
|
GpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
|
|
}
|
|
|
|
void Brox_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
|
|
{
|
|
alg_->setFlowSmoothness(alpha_);
|
|
alg_->setGradientConstancyImportance(gamma_);
|
|
alg_->setPyramidScaleFactor(scaleFactor_);
|
|
alg_->setInnerIterations(innerIterations_);
|
|
alg_->setOuterIterations(outerIterations_);
|
|
alg_->setSolverIterations(solverIterations_);
|
|
|
|
GpuMat flow;
|
|
alg_->calc(input0, input1, flow);
|
|
|
|
GpuMat flows[2];
|
|
cuda::split(flow, flows);
|
|
|
|
dst1 = flows[0];
|
|
dst2 = flows[1];
|
|
}
|
|
|
|
void Brox_CUDA::collectGarbage()
|
|
{
|
|
alg_ = cuda::BroxOpticalFlow::create(alpha_, gamma_, scaleFactor_, innerIterations_, outerIterations_, solverIterations_);
|
|
GpuOpticalFlow::collectGarbage();
|
|
}
|
|
}
|
|
|
|
Ptr<cv::superres::BroxOpticalFlow> cv::superres::createOptFlow_Brox_CUDA()
|
|
{
|
|
return makePtr<Brox_CUDA>();
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// PyrLK_CUDA
|
|
|
|
namespace
|
|
{
|
|
class PyrLK_CUDA : public GpuOpticalFlow, public cv::superres::PyrLKOpticalFlow
|
|
{
|
|
public:
|
|
PyrLK_CUDA();
|
|
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
|
|
void collectGarbage();
|
|
|
|
CV_IMPL_PROPERTY(int, WindowSize, winSize_)
|
|
CV_IMPL_PROPERTY(int, MaxLevel, maxLevel_)
|
|
CV_IMPL_PROPERTY(int, Iterations, iterations_)
|
|
|
|
protected:
|
|
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
|
|
|
|
private:
|
|
int winSize_;
|
|
int maxLevel_;
|
|
int iterations_;
|
|
|
|
Ptr<cuda::DensePyrLKOpticalFlow> alg_;
|
|
};
|
|
|
|
PyrLK_CUDA::PyrLK_CUDA() : GpuOpticalFlow(CV_8UC1)
|
|
{
|
|
alg_ = cuda::DensePyrLKOpticalFlow::create();
|
|
|
|
winSize_ = alg_->getWinSize().width;
|
|
maxLevel_ = alg_->getMaxLevel();
|
|
iterations_ = alg_->getNumIters();
|
|
}
|
|
|
|
void PyrLK_CUDA::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
|
|
{
|
|
GpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
|
|
}
|
|
|
|
void PyrLK_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
|
|
{
|
|
alg_->setWinSize(Size(winSize_, winSize_));
|
|
alg_->setMaxLevel(maxLevel_);
|
|
alg_->setNumIters(iterations_);
|
|
|
|
GpuMat flow;
|
|
alg_->calc(input0, input1, flow);
|
|
|
|
GpuMat flows[2];
|
|
cuda::split(flow, flows);
|
|
|
|
dst1 = flows[0];
|
|
dst2 = flows[1];
|
|
}
|
|
|
|
void PyrLK_CUDA::collectGarbage()
|
|
{
|
|
alg_ = cuda::DensePyrLKOpticalFlow::create();
|
|
GpuOpticalFlow::collectGarbage();
|
|
}
|
|
}
|
|
|
|
Ptr<cv::superres::PyrLKOpticalFlow> cv::superres::createOptFlow_PyrLK_CUDA()
|
|
{
|
|
return makePtr<PyrLK_CUDA>();
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// Farneback_CUDA
|
|
|
|
namespace
|
|
{
|
|
class Farneback_CUDA : public GpuOpticalFlow, public cv::superres::FarnebackOpticalFlow
|
|
{
|
|
public:
|
|
Farneback_CUDA();
|
|
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
|
|
void collectGarbage();
|
|
|
|
CV_IMPL_PROPERTY(double, PyrScale, pyrScale_)
|
|
CV_IMPL_PROPERTY(int, LevelsNumber, numLevels_)
|
|
CV_IMPL_PROPERTY(int, WindowSize, winSize_)
|
|
CV_IMPL_PROPERTY(int, Iterations, numIters_)
|
|
CV_IMPL_PROPERTY(int, PolyN, polyN_)
|
|
CV_IMPL_PROPERTY(double, PolySigma, polySigma_)
|
|
CV_IMPL_PROPERTY(int, Flags, flags_)
|
|
|
|
protected:
|
|
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
|
|
|
|
private:
|
|
double pyrScale_;
|
|
int numLevels_;
|
|
int winSize_;
|
|
int numIters_;
|
|
int polyN_;
|
|
double polySigma_;
|
|
int flags_;
|
|
|
|
Ptr<cuda::FarnebackOpticalFlow> alg_;
|
|
};
|
|
|
|
Farneback_CUDA::Farneback_CUDA() : GpuOpticalFlow(CV_8UC1)
|
|
{
|
|
alg_ = cuda::FarnebackOpticalFlow::create();
|
|
|
|
pyrScale_ = alg_->getPyrScale();
|
|
numLevels_ = alg_->getNumLevels();
|
|
winSize_ = alg_->getWinSize();
|
|
numIters_ = alg_->getNumIters();
|
|
polyN_ = alg_->getPolyN();
|
|
polySigma_ = alg_->getPolySigma();
|
|
flags_ = alg_->getFlags();
|
|
}
|
|
|
|
void Farneback_CUDA::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
|
|
{
|
|
GpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
|
|
}
|
|
|
|
void Farneback_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
|
|
{
|
|
alg_->setPyrScale(pyrScale_);
|
|
alg_->setNumLevels(numLevels_);
|
|
alg_->setWinSize(winSize_);
|
|
alg_->setNumIters(numIters_);
|
|
alg_->setPolyN(polyN_);
|
|
alg_->setPolySigma(polySigma_);
|
|
alg_->setFlags(flags_);
|
|
|
|
GpuMat flow;
|
|
alg_->calc(input0, input1, flow);
|
|
|
|
GpuMat flows[2];
|
|
cuda::split(flow, flows);
|
|
|
|
dst1 = flows[0];
|
|
dst2 = flows[1];
|
|
}
|
|
|
|
void Farneback_CUDA::collectGarbage()
|
|
{
|
|
alg_ = cuda::FarnebackOpticalFlow::create();
|
|
GpuOpticalFlow::collectGarbage();
|
|
}
|
|
}
|
|
|
|
Ptr<cv::superres::FarnebackOpticalFlow> cv::superres::createOptFlow_Farneback_CUDA()
|
|
{
|
|
return makePtr<Farneback_CUDA>();
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// DualTVL1_CUDA
|
|
|
|
namespace
|
|
{
|
|
class DualTVL1_CUDA : public GpuOpticalFlow, public cv::superres::DualTVL1OpticalFlow
|
|
{
|
|
public:
|
|
DualTVL1_CUDA();
|
|
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
|
|
void collectGarbage();
|
|
|
|
CV_IMPL_PROPERTY(double, Tau, tau_)
|
|
CV_IMPL_PROPERTY(double, Lambda, lambda_)
|
|
CV_IMPL_PROPERTY(double, Theta, theta_)
|
|
CV_IMPL_PROPERTY(int, ScalesNumber, nscales_)
|
|
CV_IMPL_PROPERTY(int, WarpingsNumber, warps_)
|
|
CV_IMPL_PROPERTY(double, Epsilon, epsilon_)
|
|
CV_IMPL_PROPERTY(int, Iterations, iterations_)
|
|
CV_IMPL_PROPERTY(bool, UseInitialFlow, useInitialFlow_)
|
|
|
|
protected:
|
|
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
|
|
|
|
private:
|
|
double tau_;
|
|
double lambda_;
|
|
double theta_;
|
|
int nscales_;
|
|
int warps_;
|
|
double epsilon_;
|
|
int iterations_;
|
|
bool useInitialFlow_;
|
|
|
|
Ptr<cuda::OpticalFlowDual_TVL1> alg_;
|
|
};
|
|
|
|
DualTVL1_CUDA::DualTVL1_CUDA() : GpuOpticalFlow(CV_8UC1)
|
|
{
|
|
alg_ = cuda::OpticalFlowDual_TVL1::create();
|
|
|
|
tau_ = alg_->getTau();
|
|
lambda_ = alg_->getLambda();
|
|
theta_ = alg_->getTheta();
|
|
nscales_ = alg_->getNumScales();
|
|
warps_ = alg_->getNumWarps();
|
|
epsilon_ = alg_->getEpsilon();
|
|
iterations_ = alg_->getNumIterations();
|
|
useInitialFlow_ = alg_->getUseInitialFlow();
|
|
}
|
|
|
|
void DualTVL1_CUDA::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
|
|
{
|
|
GpuOpticalFlow::calc(frame0, frame1, flow1, flow2);
|
|
}
|
|
|
|
void DualTVL1_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
|
|
{
|
|
alg_->setTau(tau_);
|
|
alg_->setLambda(lambda_);
|
|
alg_->setTheta(theta_);
|
|
alg_->setNumScales(nscales_);
|
|
alg_->setNumWarps(warps_);
|
|
alg_->setEpsilon(epsilon_);
|
|
alg_->setNumIterations(iterations_);
|
|
alg_->setUseInitialFlow(useInitialFlow_);
|
|
|
|
GpuMat flow;
|
|
alg_->calc(input0, input1, flow);
|
|
|
|
GpuMat flows[2];
|
|
cuda::split(flow, flows);
|
|
|
|
dst1 = flows[0];
|
|
dst2 = flows[1];
|
|
}
|
|
|
|
void DualTVL1_CUDA::collectGarbage()
|
|
{
|
|
alg_ = cuda::OpticalFlowDual_TVL1::create();
|
|
GpuOpticalFlow::collectGarbage();
|
|
}
|
|
}
|
|
|
|
Ptr<cv::superres::DualTVL1OpticalFlow> cv::superres::createOptFlow_DualTVL1_CUDA()
|
|
{
|
|
return makePtr<DualTVL1_CUDA>();
|
|
}
|
|
|
|
#endif // HAVE_OPENCV_CUDAOPTFLOW
|