133 lines
4.9 KiB
C++
133 lines
4.9 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include <test_precomp.hpp>
|
|
|
|
#ifdef HAVE_CUDA
|
|
|
|
using cv::gpu::GpuMat;
|
|
|
|
TEST(SoftCascade, readCascade)
|
|
{
|
|
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/icf-template.xml";
|
|
cv::gpu::SoftCascade cascade;
|
|
ASSERT_TRUE(cascade.load(xml));
|
|
|
|
}
|
|
|
|
TEST(SoftCascade, detect)
|
|
{
|
|
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
|
cv::gpu::SoftCascade cascade;
|
|
ASSERT_TRUE(cascade.load(xml));
|
|
|
|
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path()
|
|
+ "../cv/cascadeandhog/bahnhof/image_00000000_0.png");
|
|
ASSERT_FALSE(coloredCpu.empty());
|
|
GpuMat colored(coloredCpu), objectBoxes(1, 1000, CV_8UC1), rois;
|
|
|
|
// ASSERT_NO_THROW(
|
|
// {
|
|
cascade.detectMultiScale(colored, rois, objectBoxes);
|
|
// });
|
|
}
|
|
|
|
class SCSpecific : public ::testing::TestWithParam<std::tr1::tuple<std::string, int> > {
|
|
};
|
|
|
|
namespace {
|
|
std::string itoa(long i)
|
|
{
|
|
static char s[65];
|
|
sprintf(s, "%ld", i);
|
|
return std::string(s);
|
|
}
|
|
}
|
|
|
|
TEST_P(SCSpecific, detect)
|
|
{
|
|
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
|
|
cv::gpu::SoftCascade cascade;
|
|
ASSERT_TRUE(cascade.load(xml));
|
|
|
|
std::string path = GET_PARAM(0);
|
|
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + path);
|
|
|
|
ASSERT_FALSE(coloredCpu.empty());
|
|
GpuMat colored(coloredCpu), objectBoxes(1, 1000, CV_8UC1), rois;
|
|
|
|
int level = GET_PARAM(1);
|
|
cascade.detectMultiScale(colored, rois, objectBoxes, 1, level);
|
|
|
|
cv::Mat dt(objectBoxes);
|
|
typedef cv::gpu::SoftCascade::Detection detection_t;
|
|
|
|
detection_t* dts = (detection_t*)dt.data;
|
|
cv::Mat result(coloredCpu);
|
|
|
|
|
|
std::cout << "Total detections " << (dt.cols / sizeof(detection_t)) << std::endl;
|
|
for(int i = 0; i < (int)(dt.cols / sizeof(detection_t)); ++i)
|
|
{
|
|
detection_t d = dts[i];
|
|
std::cout << "detection: [" << std::setw(4) << d.x << " " << std::setw(4) << d.y
|
|
<< "] [" << std::setw(4) << d.w << " " << std::setw(4) << d.h << "] "
|
|
<< std::setw(12) << d.confidence << std::endl;
|
|
|
|
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
|
|
}
|
|
|
|
std::cout << "Result stored in " << "/home/kellan/gpu_res_1_oct_" + itoa(level) << "_"
|
|
+ itoa((dt.cols / sizeof(detection_t))) + ".png" << std::endl;
|
|
cv::imwrite("/home/kellan/gpu_res_1_oct_" + itoa(level) + "_" + itoa((dt.cols / sizeof(detection_t))) + ".png",
|
|
result);
|
|
cv::imshow("res", result);
|
|
cv::waitKey(0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(inLevel, SCSpecific,
|
|
testing::Combine(
|
|
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
|
|
testing::Range(0, 47)
|
|
));
|
|
|
|
#endif |