126 lines
3.4 KiB
C
126 lines
3.4 KiB
C
/* dpotri.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Subroutine */ int dpotri_(char *uplo, integer *n, doublereal *a, integer *
|
|
lda, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1;
|
|
|
|
/* Local variables */
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *), dlauum_(
|
|
char *, integer *, doublereal *, integer *, integer *),
|
|
dtrtri_(char *, char *, integer *, doublereal *, integer *,
|
|
integer *);
|
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DPOTRI computes the inverse of a real symmetric positive definite */
|
|
/* matrix A using the Cholesky factorization A = U**T*U or A = L*L**T */
|
|
/* computed by DPOTRF. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* UPLO (input) CHARACTER*1 */
|
|
/* = 'U': Upper triangle of A is stored; */
|
|
/* = 'L': Lower triangle of A is stored. */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The order of the matrix A. N >= 0. */
|
|
|
|
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
|
|
/* On entry, the triangular factor U or L from the Cholesky */
|
|
/* factorization A = U**T*U or A = L*L**T, as computed by */
|
|
/* DPOTRF. */
|
|
/* On exit, the upper or lower triangle of the (symmetric) */
|
|
/* inverse of A, overwriting the input factor U or L. */
|
|
|
|
/* LDA (input) INTEGER */
|
|
/* The leading dimension of the array A. LDA >= max(1,N). */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* = 0: successful exit */
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > 0: if INFO = i, the (i,i) element of the factor U or L is */
|
|
/* zero, and the inverse could not be computed. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -4;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DPOTRI", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Invert the triangular Cholesky factor U or L. */
|
|
|
|
dtrtri_(uplo, "Non-unit", n, &a[a_offset], lda, info);
|
|
if (*info > 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Form inv(U)*inv(U)' or inv(L)'*inv(L). */
|
|
|
|
dlauum_(uplo, n, &a[a_offset], lda, info);
|
|
|
|
return 0;
|
|
|
|
/* End of DPOTRI */
|
|
|
|
} /* dpotri_ */
|