192 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			192 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| * pca.cpp
 | |
| *
 | |
| *  Author:
 | |
| *  Kevin Hughes <kevinhughes27[at]gmail[dot]com>
 | |
| *
 | |
| *  Special Thanks to:
 | |
| *  Philipp Wagner <bytefish[at]gmx[dot]de>
 | |
| *
 | |
| * This program demonstrates how to use OpenCV PCA with a
 | |
| * specified amount of variance to retain. The effect
 | |
| * is illustrated further by using a trackbar to
 | |
| * change the value for retained varaince.
 | |
| *
 | |
| * The program takes as input a text file with each line
 | |
| * begin the full path to an image. PCA will be performed
 | |
| * on this list of images. The author recommends using
 | |
| * the first 15 faces of the AT&T face data set:
 | |
| * http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
 | |
| *
 | |
| * so for example your input text file would look like this:
 | |
| *
 | |
| *        <path_to_at&t_faces>/orl_faces/s1/1.pgm
 | |
| *        <path_to_at&t_faces>/orl_faces/s2/1.pgm
 | |
| *        <path_to_at&t_faces>/orl_faces/s3/1.pgm
 | |
| *        <path_to_at&t_faces>/orl_faces/s4/1.pgm
 | |
| *        <path_to_at&t_faces>/orl_faces/s5/1.pgm
 | |
| *        <path_to_at&t_faces>/orl_faces/s6/1.pgm
 | |
| *        <path_to_at&t_faces>/orl_faces/s7/1.pgm
 | |
| *        <path_to_at&t_faces>/orl_faces/s8/1.pgm
 | |
| *        <path_to_at&t_faces>/orl_faces/s9/1.pgm
 | |
| *        <path_to_at&t_faces>/orl_faces/s10/1.pgm
 | |
| *        <path_to_at&t_faces>/orl_faces/s11/1.pgm
 | |
| *        <path_to_at&t_faces>/orl_faces/s12/1.pgm
 | |
| *        <path_to_at&t_faces>/orl_faces/s13/1.pgm
 | |
| *        <path_to_at&t_faces>/orl_faces/s14/1.pgm
 | |
| *        <path_to_at&t_faces>/orl_faces/s15/1.pgm
 | |
| *
 | |
| */
 | |
| 
 | |
| #include <iostream>
 | |
| #include <fstream>
 | |
| #include <sstream>
 | |
| 
 | |
| #include <opencv2/core/core.hpp>
 | |
| #include "opencv2/imgcodecs.hpp"
 | |
| #include <opencv2/highgui/highgui.hpp>
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| ///////////////////////
 | |
| // Functions
 | |
| static void read_imgList(const string& filename, vector<Mat>& images) {
 | |
|     std::ifstream file(filename.c_str(), ifstream::in);
 | |
|     if (!file) {
 | |
|         string error_message = "No valid input file was given, please check the given filename.";
 | |
|         CV_Error(Error::StsBadArg, error_message);
 | |
|     }
 | |
|     string line;
 | |
|     while (getline(file, line)) {
 | |
|         images.push_back(imread(line, 0));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static  Mat formatImagesForPCA(const vector<Mat> &data)
 | |
| {
 | |
|     Mat dst(static_cast<int>(data.size()), data[0].rows*data[0].cols, CV_32F);
 | |
|     for(unsigned int i = 0; i < data.size(); i++)
 | |
|     {
 | |
|         Mat image_row = data[i].clone().reshape(1,1);
 | |
|         Mat row_i = dst.row(i);
 | |
|         image_row.convertTo(row_i,CV_32F);
 | |
|     }
 | |
|     return dst;
 | |
| }
 | |
| 
 | |
| static Mat toGrayscale(InputArray _src) {
 | |
|     Mat src = _src.getMat();
 | |
|     // only allow one channel
 | |
|     if(src.channels() != 1) {
 | |
|         CV_Error(Error::StsBadArg, "Only Matrices with one channel are supported");
 | |
|     }
 | |
|     // create and return normalized image
 | |
|     Mat dst;
 | |
|     cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
 | |
|     return dst;
 | |
| }
 | |
| 
 | |
| struct params
 | |
| {
 | |
|     Mat data;
 | |
|     int ch;
 | |
|     int rows;
 | |
|     PCA pca;
 | |
|     string winName;
 | |
| };
 | |
| 
 | |
| static void onTrackbar(int pos, void* ptr)
 | |
| {
 | |
|     cout << "Retained Variance = " << pos << "%   ";
 | |
|     cout << "re-calculating PCA..." << std::flush;
 | |
| 
 | |
|     double var = pos / 100.0;
 | |
| 
 | |
|     struct params *p = (struct params *)ptr;
 | |
| 
 | |
|     p->pca = PCA(p->data, cv::Mat(), PCA::DATA_AS_ROW, var);
 | |
| 
 | |
|     Mat point = p->pca.project(p->data.row(0));
 | |
|     Mat reconstruction = p->pca.backProject(point);
 | |
|     reconstruction = reconstruction.reshape(p->ch, p->rows);
 | |
|     reconstruction = toGrayscale(reconstruction);
 | |
| 
 | |
|     imshow(p->winName, reconstruction);
 | |
|     cout << "done!   # of principal components: " << p->pca.eigenvectors.rows << endl;
 | |
| }
 | |
| 
 | |
| 
 | |
| ///////////////////////
 | |
| // Main
 | |
| int main(int argc, char** argv)
 | |
| {
 | |
|     cv::CommandLineParser parser(argc, argv, "{@input||image list}{help h||show help message}");
 | |
|     if (parser.has("help"))
 | |
|     {
 | |
|         parser.printMessage();
 | |
|         exit(0);
 | |
|     }
 | |
|     // Get the path to your CSV.
 | |
|     string imgList = parser.get<string>("@input");
 | |
|     if (imgList.empty())
 | |
|     {
 | |
|         parser.printMessage();
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     // vector to hold the images
 | |
|     vector<Mat> images;
 | |
| 
 | |
|     // Read in the data. This can fail if not valid
 | |
|     try {
 | |
|         read_imgList(imgList, images);
 | |
|     } catch (cv::Exception& e) {
 | |
|         cerr << "Error opening file \"" << imgList << "\". Reason: " << e.msg << endl;
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     // Quit if there are not enough images for this demo.
 | |
|     if(images.size() <= 1) {
 | |
|         string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
 | |
|         CV_Error(Error::StsError, error_message);
 | |
|     }
 | |
| 
 | |
|     // Reshape and stack images into a rowMatrix
 | |
|     Mat data = formatImagesForPCA(images);
 | |
| 
 | |
|     // perform PCA
 | |
|     PCA pca(data, cv::Mat(), PCA::DATA_AS_ROW, 0.95); // trackbar is initially set here, also this is a common value for retainedVariance
 | |
| 
 | |
|     // Demonstration of the effect of retainedVariance on the first image
 | |
|     Mat point = pca.project(data.row(0)); // project into the eigenspace, thus the image becomes a "point"
 | |
|     Mat reconstruction = pca.backProject(point); // re-create the image from the "point"
 | |
|     reconstruction = reconstruction.reshape(images[0].channels(), images[0].rows); // reshape from a row vector into image shape
 | |
|     reconstruction = toGrayscale(reconstruction); // re-scale for displaying purposes
 | |
| 
 | |
|     // init highgui window
 | |
|     string winName = "Reconstruction | press 'q' to quit";
 | |
|     namedWindow(winName, WINDOW_NORMAL);
 | |
| 
 | |
|     // params struct to pass to the trackbar handler
 | |
|     params p;
 | |
|     p.data = data;
 | |
|     p.ch = images[0].channels();
 | |
|     p.rows = images[0].rows;
 | |
|     p.pca = pca;
 | |
|     p.winName = winName;
 | |
| 
 | |
|     // create the tracbar
 | |
|     int pos = 95;
 | |
|     createTrackbar("Retained Variance (%)", winName, &pos, 100, onTrackbar, (void*)&p);
 | |
| 
 | |
|     // display until user presses q
 | |
|     imshow(winName, reconstruction);
 | |
| 
 | |
|     int key = 0;
 | |
|     while(key != 'q')
 | |
|         key = waitKey();
 | |
| 
 | |
|    return 0;
 | |
| }
 | 
