361 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			361 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * 3calibration.cpp -- Calibrate 3 cameras in a horizontal line together.
 | |
|  */
 | |
| 
 | |
| #include "opencv2/calib3d/calib3d.hpp"
 | |
| #include "opencv2/imgproc/imgproc.hpp"
 | |
| #include "opencv2/imgcodecs/imgcodecs.hpp"
 | |
| #include "opencv2/highgui/highgui.hpp"
 | |
| #include "opencv2/core/utility.hpp"
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <time.h>
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 };
 | |
| 
 | |
| static void help()
 | |
| {
 | |
|         printf( "\nThis is a camera calibration sample that calibrates 3 horizontally placed cameras together.\n"
 | |
|                "Usage: 3calibration\n"
 | |
|                "     -w=<board_width>         # the number of inner corners per one of board dimension\n"
 | |
|                "     -h=<board_height>        # the number of inner corners per another board dimension\n"
 | |
|                "     [-s=<squareSize>]       # square size in some user-defined units (1 by default)\n"
 | |
|                "     [-o=<out_camera_params>] # the output filename for intrinsic [and extrinsic] parameters\n"
 | |
|                "     [-zt]                    # assume zero tangential distortion\n"
 | |
|                "     [-a=<aspectRatio>]      # fix aspect ratio (fx/fy)\n"
 | |
|                "     [-p]                     # fix the principal point at the center\n"
 | |
|                "     [input_data]             # input data - text file with a list of the images of the board\n"
 | |
|                "\n" );
 | |
| 
 | |
| }
 | |
| 
 | |
| static void calcChessboardCorners(Size boardSize, float squareSize, vector<Point3f>& corners)
 | |
| {
 | |
|     corners.resize(0);
 | |
| 
 | |
|     for( int i = 0; i < boardSize.height; i++ )
 | |
|         for( int j = 0; j < boardSize.width; j++ )
 | |
|             corners.push_back(Point3f(float(j*squareSize),
 | |
|                                       float(i*squareSize), 0));
 | |
| }
 | |
| 
 | |
| static bool run3Calibration(vector<vector<Point2f> > imagePoints1,
 | |
|                             vector<vector<Point2f> > imagePoints2,
 | |
|                             vector<vector<Point2f> > imagePoints3,
 | |
|                             Size imageSize, Size boardSize,
 | |
|                             float squareSize, float aspectRatio,
 | |
|                             int flags,
 | |
|                             Mat& cameraMatrix1, Mat& distCoeffs1,
 | |
|                             Mat& cameraMatrix2, Mat& distCoeffs2,
 | |
|                             Mat& cameraMatrix3, Mat& distCoeffs3,
 | |
|                             Mat& R12, Mat& T12, Mat& R13, Mat& T13)
 | |
| {
 | |
|     int c, i;
 | |
| 
 | |
|     // step 1: calibrate each camera individually
 | |
|     vector<vector<Point3f> > objpt(1);
 | |
|     vector<vector<Point2f> > imgpt;
 | |
|     calcChessboardCorners(boardSize, squareSize, objpt[0]);
 | |
|     vector<Mat> rvecs, tvecs;
 | |
| 
 | |
|     for( c = 1; c <= 3; c++ )
 | |
|     {
 | |
|         const vector<vector<Point2f> >& imgpt0 = c == 1 ? imagePoints1 : c == 2 ? imagePoints2 : imagePoints3;
 | |
|         imgpt.clear();
 | |
|         int N = 0;
 | |
|         for( i = 0; i < (int)imgpt0.size(); i++ )
 | |
|             if( !imgpt0[i].empty() )
 | |
|             {
 | |
|                 imgpt.push_back(imgpt0[i]);
 | |
|                 N += (int)imgpt0[i].size();
 | |
|             }
 | |
| 
 | |
|         if( imgpt.size() < 3 )
 | |
|         {
 | |
|             printf("Error: not enough views for camera %d\n", c);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         objpt.resize(imgpt.size(),objpt[0]);
 | |
| 
 | |
|         Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
 | |
|         if( flags & CALIB_FIX_ASPECT_RATIO )
 | |
|             cameraMatrix.at<double>(0,0) = aspectRatio;
 | |
| 
 | |
|         Mat distCoeffs = Mat::zeros(5, 1, CV_64F);
 | |
| 
 | |
|         double err = calibrateCamera(objpt, imgpt, imageSize, cameraMatrix,
 | |
|                         distCoeffs, rvecs, tvecs,
 | |
|                         flags|CALIB_FIX_K3/*|CALIB_FIX_K4|CALIB_FIX_K5|CALIB_FIX_K6*/);
 | |
|         bool ok = checkRange(cameraMatrix) && checkRange(distCoeffs);
 | |
|         if(!ok)
 | |
|         {
 | |
|             printf("Error: camera %d was not calibrated\n", c);
 | |
|             return false;
 | |
|         }
 | |
|         printf("Camera %d calibration reprojection error = %g\n", c, sqrt(err/N));
 | |
| 
 | |
|         if( c == 1 )
 | |
|             cameraMatrix1 = cameraMatrix, distCoeffs1 = distCoeffs;
 | |
|         else if( c == 2 )
 | |
|             cameraMatrix2 = cameraMatrix, distCoeffs2 = distCoeffs;
 | |
|         else
 | |
|             cameraMatrix3 = cameraMatrix, distCoeffs3 = distCoeffs;
 | |
|     }
 | |
| 
 | |
|     vector<vector<Point2f> > imgpt_right;
 | |
| 
 | |
|     // step 2: calibrate (1,2) and (3,2) pairs
 | |
|     for( c = 2; c <= 3; c++ )
 | |
|     {
 | |
|         const vector<vector<Point2f> >& imgpt0 = c == 2 ? imagePoints2 : imagePoints3;
 | |
| 
 | |
|         imgpt.clear();
 | |
|         imgpt_right.clear();
 | |
|         int N = 0;
 | |
| 
 | |
|         for( i = 0; i < (int)std::min(imagePoints1.size(), imgpt0.size()); i++ )
 | |
|             if( !imagePoints1.empty() && !imgpt0[i].empty() )
 | |
|             {
 | |
|                 imgpt.push_back(imagePoints1[i]);
 | |
|                 imgpt_right.push_back(imgpt0[i]);
 | |
|                 N += (int)imgpt0[i].size();
 | |
|             }
 | |
| 
 | |
|         if( imgpt.size() < 3 )
 | |
|         {
 | |
|             printf("Error: not enough shared views for cameras 1 and %d\n", c);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         objpt.resize(imgpt.size(),objpt[0]);
 | |
|         Mat cameraMatrix = c == 2 ? cameraMatrix2 : cameraMatrix3;
 | |
|         Mat distCoeffs = c == 2 ? distCoeffs2 : distCoeffs3;
 | |
|         Mat R, T, E, F;
 | |
|         double err = stereoCalibrate(objpt, imgpt, imgpt_right, cameraMatrix1, distCoeffs1,
 | |
|                                      cameraMatrix, distCoeffs,
 | |
|                                      imageSize, R, T, E, F,
 | |
|                                      CALIB_FIX_INTRINSIC,
 | |
|                                      TermCriteria(TermCriteria::COUNT, 30, 0));
 | |
|         printf("Pair (1,%d) calibration reprojection error = %g\n", c, sqrt(err/(N*2)));
 | |
|         if( c == 2 )
 | |
|         {
 | |
|             cameraMatrix2 = cameraMatrix;
 | |
|             distCoeffs2 = distCoeffs;
 | |
|             R12 = R; T12 = T;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             R13 = R; T13 = T;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool readStringList( const string& filename, vector<string>& l )
 | |
| {
 | |
|     l.resize(0);
 | |
|     FileStorage fs(filename, FileStorage::READ);
 | |
|     if( !fs.isOpened() )
 | |
|         return false;
 | |
|     FileNode n = fs.getFirstTopLevelNode();
 | |
|     if( n.type() != FileNode::SEQ )
 | |
|         return false;
 | |
|     FileNodeIterator it = n.begin(), it_end = n.end();
 | |
|     for( ; it != it_end; ++it )
 | |
|         l.push_back((string)*it);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| int main( int argc, char** argv )
 | |
| {
 | |
|     int i, k;
 | |
|     int flags = 0;
 | |
|     Size boardSize, imageSize;
 | |
|     float squareSize, aspectRatio;
 | |
|     string outputFilename;
 | |
|     string inputFilename = "";
 | |
| 
 | |
|     vector<vector<Point2f> > imgpt[3];
 | |
|     vector<string> imageList;
 | |
| 
 | |
|     cv::CommandLineParser parser(argc, argv,
 | |
|         "{help ||}{w||}{h||}{s|1|}{o|out_camera_data.yml|}"
 | |
|         "{zt||}{a|1|}{p||}{@input||}");
 | |
|     if (parser.has("help"))
 | |
|     {
 | |
|         help();
 | |
|         return 0;
 | |
|     }
 | |
|     boardSize.width = parser.get<int>("w");
 | |
|     boardSize.height = parser.get<int>("h");
 | |
|     squareSize = parser.get<float>("s");
 | |
|     aspectRatio = parser.get<float>("a");
 | |
|     if (parser.has("a"))
 | |
|         flags |= CALIB_FIX_ASPECT_RATIO;
 | |
|     if (parser.has("zt"))
 | |
|         flags |= CALIB_ZERO_TANGENT_DIST;
 | |
|     if (parser.has("p"))
 | |
|         flags |= CALIB_FIX_PRINCIPAL_POINT;
 | |
|     outputFilename = parser.get<string>("o");
 | |
|     inputFilename = parser.get<string>("@input");
 | |
|     if (!parser.check())
 | |
|     {
 | |
|         help();
 | |
|         parser.printErrors();
 | |
|         return -1;
 | |
|     }
 | |
|     if (boardSize.width <= 0)
 | |
|         return fprintf( stderr, "Invalid board width\n" ), -1;
 | |
|     if (boardSize.height <= 0)
 | |
|         return fprintf( stderr, "Invalid board height\n" ), -1;
 | |
|     if (squareSize <= 0)
 | |
|         return fprintf( stderr, "Invalid board square width\n" ), -1;
 | |
|     if (aspectRatio <= 0)
 | |
|         return printf("Invalid aspect ratio\n" ), -1;
 | |
|     if( inputFilename.empty() ||
 | |
|        !readStringList(inputFilename, imageList) ||
 | |
|        imageList.size() == 0 || imageList.size() % 3 != 0 )
 | |
|     {
 | |
|         printf("Error: the input image list is not specified, or can not be read, or the number of files is not divisible by 3\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     Mat view, viewGray;
 | |
|     Mat cameraMatrix[3], distCoeffs[3], R[3], P[3], R12, T12;
 | |
|     for( k = 0; k < 3; k++ )
 | |
|     {
 | |
|         cameraMatrix[k] = Mat_<double>::eye(3,3);
 | |
|         cameraMatrix[k].at<double>(0,0) = aspectRatio;
 | |
|         cameraMatrix[k].at<double>(1,1) = 1;
 | |
|         distCoeffs[k] = Mat_<double>::zeros(5,1);
 | |
|     }
 | |
|     Mat R13=Mat_<double>::eye(3,3), T13=Mat_<double>::zeros(3,1);
 | |
| 
 | |
|     FileStorage fs;
 | |
|     namedWindow( "Image View", 0 );
 | |
| 
 | |
|     for( k = 0; k < 3; k++ )
 | |
|         imgpt[k].resize(imageList.size()/3);
 | |
| 
 | |
|     for( i = 0; i < (int)(imageList.size()/3); i++ )
 | |
|     {
 | |
|         for( k = 0; k < 3; k++ )
 | |
|         {
 | |
|             int k1 = k == 0 ? 2 : k == 1 ? 0 : 1;
 | |
|             printf("%s\n", imageList[i*3+k].c_str());
 | |
|             view = imread(imageList[i*3+k], 1);
 | |
| 
 | |
|             if(!view.empty())
 | |
|             {
 | |
|                 vector<Point2f> ptvec;
 | |
|                 imageSize = view.size();
 | |
|                 cvtColor(view, viewGray, COLOR_BGR2GRAY);
 | |
|                 bool found = findChessboardCorners( view, boardSize, ptvec, CALIB_CB_ADAPTIVE_THRESH );
 | |
| 
 | |
|                 drawChessboardCorners( view, boardSize, Mat(ptvec), found );
 | |
|                 if( found )
 | |
|                 {
 | |
|                     imgpt[k1][i].resize(ptvec.size());
 | |
|                     std::copy(ptvec.begin(), ptvec.end(), imgpt[k1][i].begin());
 | |
|                 }
 | |
|                 //imshow("view", view);
 | |
|                 //int c = waitKey(0) & 255;
 | |
|                 //if( c == 27 || c == 'q' || c == 'Q' )
 | |
|                 //    return -1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     printf("Running calibration ...\n");
 | |
| 
 | |
|     run3Calibration(imgpt[0], imgpt[1], imgpt[2], imageSize,
 | |
|                     boardSize, squareSize, aspectRatio, flags|CALIB_FIX_K4|CALIB_FIX_K5,
 | |
|                     cameraMatrix[0], distCoeffs[0],
 | |
|                     cameraMatrix[1], distCoeffs[1],
 | |
|                     cameraMatrix[2], distCoeffs[2],
 | |
|                     R12, T12, R13, T13);
 | |
| 
 | |
|     fs.open(outputFilename, FileStorage::WRITE);
 | |
| 
 | |
|     fs << "cameraMatrix1" << cameraMatrix[0];
 | |
|     fs << "cameraMatrix2" << cameraMatrix[1];
 | |
|     fs << "cameraMatrix3" << cameraMatrix[2];
 | |
| 
 | |
|     fs << "distCoeffs1" << distCoeffs[0];
 | |
|     fs << "distCoeffs2" << distCoeffs[1];
 | |
|     fs << "distCoeffs3" << distCoeffs[2];
 | |
| 
 | |
|     fs << "R12" << R12;
 | |
|     fs << "T12" << T12;
 | |
|     fs << "R13" << R13;
 | |
|     fs << "T13" << T13;
 | |
| 
 | |
|     fs << "imageWidth" << imageSize.width;
 | |
|     fs << "imageHeight" << imageSize.height;
 | |
| 
 | |
|     Mat Q;
 | |
| 
 | |
|     // step 3: find rectification transforms
 | |
|     double ratio = rectify3Collinear(cameraMatrix[0], distCoeffs[0], cameraMatrix[1],
 | |
|              distCoeffs[1], cameraMatrix[2], distCoeffs[2],
 | |
|              imgpt[0], imgpt[2],
 | |
|              imageSize, R12, T12, R13, T13,
 | |
|              R[0], R[1], R[2], P[0], P[1], P[2], Q, -1.,
 | |
|              imageSize, 0, 0, CALIB_ZERO_DISPARITY);
 | |
|     Mat map1[3], map2[3];
 | |
| 
 | |
|     fs << "R1" << R[0];
 | |
|     fs << "R2" << R[1];
 | |
|     fs << "R3" << R[2];
 | |
| 
 | |
|     fs << "P1" << P[0];
 | |
|     fs << "P2" << P[1];
 | |
|     fs << "P3" << P[2];
 | |
| 
 | |
|     fs << "disparityRatio" << ratio;
 | |
|     fs.release();
 | |
| 
 | |
|     printf("Disparity ratio = %g\n", ratio);
 | |
| 
 | |
|     for( k = 0; k < 3; k++ )
 | |
|         initUndistortRectifyMap(cameraMatrix[k], distCoeffs[k], R[k], P[k], imageSize, CV_16SC2, map1[k], map2[k]);
 | |
| 
 | |
|     Mat canvas(imageSize.height, imageSize.width*3, CV_8UC3), small_canvas;
 | |
|     destroyWindow("view");
 | |
|     canvas = Scalar::all(0);
 | |
| 
 | |
|     for( i = 0; i < (int)(imageList.size()/3); i++ )
 | |
|     {
 | |
|         canvas = Scalar::all(0);
 | |
|         for( k = 0; k < 3; k++ )
 | |
|         {
 | |
|             int k1 = k == 0 ? 2 : k == 1 ? 0 : 1;
 | |
|             int k2 = k == 0 ? 1 : k == 1 ? 0 : 2;
 | |
|             view = imread(imageList[i*3+k], 1);
 | |
| 
 | |
|             if(view.empty())
 | |
|                 continue;
 | |
| 
 | |
|             Mat rview = canvas.colRange(k2*imageSize.width, (k2+1)*imageSize.width);
 | |
|             remap(view, rview, map1[k1], map2[k1], INTER_LINEAR);
 | |
|         }
 | |
|         printf("%s %s %s\n", imageList[i*3].c_str(), imageList[i*3+1].c_str(), imageList[i*3+2].c_str());
 | |
|         resize( canvas, small_canvas, Size(1500, 1500/3) );
 | |
|         for( k = 0; k < small_canvas.rows; k += 16 )
 | |
|             line(small_canvas, Point(0, k), Point(small_canvas.cols, k), Scalar(0,255,0), 1);
 | |
|         imshow("rectified", small_canvas);
 | |
|         int c = waitKey(0);
 | |
|         if( c == 27 || c == 'q' || c == 'Q' )
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
