836 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			836 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                        Intel License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of Intel Corporation may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
/*
 | 
						|
 * cvhaarclassifier.cpp
 | 
						|
 *
 | 
						|
 * haar classifiers (stump, CART, stage, cascade)
 | 
						|
 */
 | 
						|
 | 
						|
#include "_cvhaartraining.h"
 | 
						|
 | 
						|
 | 
						|
CvIntHaarClassifier* icvCreateCARTHaarClassifier( int count )
 | 
						|
{
 | 
						|
    CvCARTHaarClassifier* cart;
 | 
						|
    size_t datasize;
 | 
						|
 | 
						|
    datasize = sizeof( *cart ) +
 | 
						|
        ( sizeof( int ) +
 | 
						|
          sizeof( CvTHaarFeature ) + sizeof( CvFastHaarFeature ) +
 | 
						|
          sizeof( float ) + sizeof( int ) + sizeof( int ) ) * count +
 | 
						|
        sizeof( float ) * (count + 1);
 | 
						|
 | 
						|
    cart = (CvCARTHaarClassifier*) cvAlloc( datasize );
 | 
						|
    memset( cart, 0, datasize );
 | 
						|
 | 
						|
    cart->feature = (CvTHaarFeature*) (cart + 1);
 | 
						|
    cart->fastfeature = (CvFastHaarFeature*) (cart->feature + count);
 | 
						|
    cart->threshold = (float*) (cart->fastfeature + count);
 | 
						|
    cart->left = (int*) (cart->threshold + count);
 | 
						|
    cart->right = (int*) (cart->left + count);
 | 
						|
    cart->val = (float*) (cart->right + count);
 | 
						|
    cart->compidx = (int*) (cart->val + count + 1 );
 | 
						|
    cart->count = count;
 | 
						|
    cart->eval = icvEvalCARTHaarClassifier;
 | 
						|
    cart->save = icvSaveCARTHaarClassifier;
 | 
						|
    cart->release = icvReleaseHaarClassifier;
 | 
						|
 | 
						|
    return (CvIntHaarClassifier*) cart;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void icvReleaseHaarClassifier( CvIntHaarClassifier** classifier )
 | 
						|
{
 | 
						|
    cvFree( classifier );
 | 
						|
    *classifier = NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void icvInitCARTHaarClassifier( CvCARTHaarClassifier* carthaar, CvCARTClassifier* cart,
 | 
						|
                                CvIntHaarFeatures* intHaarFeatures )
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for( i = 0; i < cart->count; i++ )
 | 
						|
    {
 | 
						|
        carthaar->feature[i] = intHaarFeatures->feature[cart->compidx[i]];
 | 
						|
        carthaar->fastfeature[i] = intHaarFeatures->fastfeature[cart->compidx[i]];
 | 
						|
        carthaar->threshold[i] = cart->threshold[i];
 | 
						|
        carthaar->left[i] = cart->left[i];
 | 
						|
        carthaar->right[i] = cart->right[i];
 | 
						|
        carthaar->val[i] = cart->val[i];
 | 
						|
        carthaar->compidx[i] = cart->compidx[i];
 | 
						|
    }
 | 
						|
    carthaar->count = cart->count;
 | 
						|
    carthaar->val[cart->count] = cart->val[cart->count];
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
float icvEvalCARTHaarClassifier( CvIntHaarClassifier* classifier,
 | 
						|
                                 sum_type* sum, sum_type* tilted, float normfactor )
 | 
						|
{
 | 
						|
    int idx = 0;
 | 
						|
 | 
						|
    do
 | 
						|
    {
 | 
						|
        if( cvEvalFastHaarFeature(
 | 
						|
                ((CvCARTHaarClassifier*) classifier)->fastfeature + idx, sum, tilted )
 | 
						|
              < (((CvCARTHaarClassifier*) classifier)->threshold[idx] * normfactor) )
 | 
						|
        {
 | 
						|
            idx = ((CvCARTHaarClassifier*) classifier)->left[idx];
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            idx = ((CvCARTHaarClassifier*) classifier)->right[idx];
 | 
						|
        }
 | 
						|
    } while( idx > 0 );
 | 
						|
 | 
						|
    return ((CvCARTHaarClassifier*) classifier)->val[-idx];
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
CvIntHaarClassifier* icvCreateStageHaarClassifier( int count, float threshold )
 | 
						|
{
 | 
						|
    CvStageHaarClassifier* stage;
 | 
						|
    size_t datasize;
 | 
						|
 | 
						|
    datasize = sizeof( *stage ) + sizeof( CvIntHaarClassifier* ) * count;
 | 
						|
    stage = (CvStageHaarClassifier*) cvAlloc( datasize );
 | 
						|
    memset( stage, 0, datasize );
 | 
						|
 | 
						|
    stage->count = count;
 | 
						|
    stage->threshold = threshold;
 | 
						|
    stage->classifier = (CvIntHaarClassifier**) (stage + 1);
 | 
						|
 | 
						|
    stage->eval = icvEvalStageHaarClassifier;
 | 
						|
    stage->save = icvSaveStageHaarClassifier;
 | 
						|
    stage->release = icvReleaseStageHaarClassifier;
 | 
						|
 | 
						|
    return (CvIntHaarClassifier*) stage;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void icvReleaseStageHaarClassifier( CvIntHaarClassifier** classifier )
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for( i = 0; i < ((CvStageHaarClassifier*) *classifier)->count; i++ )
 | 
						|
    {
 | 
						|
        if( ((CvStageHaarClassifier*) *classifier)->classifier[i] != NULL )
 | 
						|
        {
 | 
						|
            ((CvStageHaarClassifier*) *classifier)->classifier[i]->release(
 | 
						|
                &(((CvStageHaarClassifier*) *classifier)->classifier[i]) );
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    cvFree( classifier );
 | 
						|
    *classifier = NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
float icvEvalStageHaarClassifier( CvIntHaarClassifier* classifier,
 | 
						|
                                  sum_type* sum, sum_type* tilted, float normfactor )
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    float stage_sum;
 | 
						|
 | 
						|
    stage_sum = 0.0F;
 | 
						|
    for( i = 0; i < ((CvStageHaarClassifier*) classifier)->count; i++ )
 | 
						|
    {
 | 
						|
        stage_sum +=
 | 
						|
            ((CvStageHaarClassifier*) classifier)->classifier[i]->eval(
 | 
						|
                ((CvStageHaarClassifier*) classifier)->classifier[i],
 | 
						|
                sum, tilted, normfactor );
 | 
						|
    }
 | 
						|
 | 
						|
    return stage_sum;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
CvIntHaarClassifier* icvCreateCascadeHaarClassifier( int count )
 | 
						|
{
 | 
						|
    CvCascadeHaarClassifier* ptr;
 | 
						|
    size_t datasize;
 | 
						|
 | 
						|
    datasize = sizeof( *ptr ) + sizeof( CvIntHaarClassifier* ) * count;
 | 
						|
    ptr = (CvCascadeHaarClassifier*) cvAlloc( datasize );
 | 
						|
    memset( ptr, 0, datasize );
 | 
						|
 | 
						|
    ptr->count = count;
 | 
						|
    ptr->classifier = (CvIntHaarClassifier**) (ptr + 1);
 | 
						|
 | 
						|
    ptr->eval = icvEvalCascadeHaarClassifier;
 | 
						|
    ptr->save = NULL;
 | 
						|
    ptr->release = icvReleaseCascadeHaarClassifier;
 | 
						|
 | 
						|
    return (CvIntHaarClassifier*) ptr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void icvReleaseCascadeHaarClassifier( CvIntHaarClassifier** classifier )
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for( i = 0; i < ((CvCascadeHaarClassifier*) *classifier)->count; i++ )
 | 
						|
    {
 | 
						|
        if( ((CvCascadeHaarClassifier*) *classifier)->classifier[i] != NULL )
 | 
						|
        {
 | 
						|
            ((CvCascadeHaarClassifier*) *classifier)->classifier[i]->release(
 | 
						|
                &(((CvCascadeHaarClassifier*) *classifier)->classifier[i]) );
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    cvFree( classifier );
 | 
						|
    *classifier = NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
float icvEvalCascadeHaarClassifier( CvIntHaarClassifier* classifier,
 | 
						|
                                    sum_type* sum, sum_type* tilted, float normfactor )
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for( i = 0; i < ((CvCascadeHaarClassifier*) classifier)->count; i++ )
 | 
						|
    {
 | 
						|
        if( ((CvCascadeHaarClassifier*) classifier)->classifier[i]->eval(
 | 
						|
                    ((CvCascadeHaarClassifier*) classifier)->classifier[i],
 | 
						|
                    sum, tilted, normfactor )
 | 
						|
            < ( ((CvStageHaarClassifier*)
 | 
						|
                    ((CvCascadeHaarClassifier*) classifier)->classifier[i])->threshold
 | 
						|
                            - CV_THRESHOLD_EPS) )
 | 
						|
        {
 | 
						|
            return 0.0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 1.0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void icvSaveHaarFeature( CvTHaarFeature* feature, FILE* file )
 | 
						|
{
 | 
						|
    fprintf( file, "%d\n", ( ( feature->rect[2].weight == 0.0F ) ? 2 : 3) );
 | 
						|
    fprintf( file, "%d %d %d %d %d %d\n",
 | 
						|
        feature->rect[0].r.x,
 | 
						|
        feature->rect[0].r.y,
 | 
						|
        feature->rect[0].r.width,
 | 
						|
        feature->rect[0].r.height,
 | 
						|
        0,
 | 
						|
        (int) (feature->rect[0].weight) );
 | 
						|
    fprintf( file, "%d %d %d %d %d %d\n",
 | 
						|
        feature->rect[1].r.x,
 | 
						|
        feature->rect[1].r.y,
 | 
						|
        feature->rect[1].r.width,
 | 
						|
        feature->rect[1].r.height,
 | 
						|
        0,
 | 
						|
        (int) (feature->rect[1].weight) );
 | 
						|
    if( feature->rect[2].weight != 0.0F )
 | 
						|
    {
 | 
						|
        fprintf( file, "%d %d %d %d %d %d\n",
 | 
						|
            feature->rect[2].r.x,
 | 
						|
            feature->rect[2].r.y,
 | 
						|
            feature->rect[2].r.width,
 | 
						|
            feature->rect[2].r.height,
 | 
						|
            0,
 | 
						|
            (int) (feature->rect[2].weight) );
 | 
						|
    }
 | 
						|
    fprintf( file, "%s\n", &(feature->desc[0]) );
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void icvLoadHaarFeature( CvTHaarFeature* feature, FILE* file )
 | 
						|
{
 | 
						|
    int nrect;
 | 
						|
    int j;
 | 
						|
    int tmp;
 | 
						|
    int weight;
 | 
						|
 | 
						|
    nrect = 0;
 | 
						|
    int values_read = fscanf( file, "%d", &nrect );
 | 
						|
    CV_Assert(values_read == 1);
 | 
						|
 | 
						|
    assert( nrect <= CV_HAAR_FEATURE_MAX );
 | 
						|
 | 
						|
    for( j = 0; j < nrect; j++ )
 | 
						|
    {
 | 
						|
        values_read = fscanf( file, "%d %d %d %d %d %d",
 | 
						|
            &(feature->rect[j].r.x),
 | 
						|
            &(feature->rect[j].r.y),
 | 
						|
            &(feature->rect[j].r.width),
 | 
						|
            &(feature->rect[j].r.height),
 | 
						|
            &tmp, &weight );
 | 
						|
        CV_Assert(values_read == 6);
 | 
						|
        feature->rect[j].weight = (float) weight;
 | 
						|
    }
 | 
						|
    for( j = nrect; j < CV_HAAR_FEATURE_MAX; j++ )
 | 
						|
    {
 | 
						|
        feature->rect[j].r.x = 0;
 | 
						|
        feature->rect[j].r.y = 0;
 | 
						|
        feature->rect[j].r.width = 0;
 | 
						|
        feature->rect[j].r.height = 0;
 | 
						|
        feature->rect[j].weight = 0.0f;
 | 
						|
    }
 | 
						|
    values_read = fscanf( file, "%s", &(feature->desc[0]) );
 | 
						|
    CV_Assert(values_read == 1);
 | 
						|
    feature->tilted = ( feature->desc[0] == 't' );
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void icvSaveCARTHaarClassifier( CvIntHaarClassifier* classifier, FILE* file )
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int count;
 | 
						|
 | 
						|
    count = ((CvCARTHaarClassifier*) classifier)->count;
 | 
						|
    fprintf( file, "%d\n", count );
 | 
						|
    for( i = 0; i < count; i++ )
 | 
						|
    {
 | 
						|
        icvSaveHaarFeature( &(((CvCARTHaarClassifier*) classifier)->feature[i]), file );
 | 
						|
        fprintf( file, "%e %d %d\n",
 | 
						|
            ((CvCARTHaarClassifier*) classifier)->threshold[i],
 | 
						|
            ((CvCARTHaarClassifier*) classifier)->left[i],
 | 
						|
            ((CvCARTHaarClassifier*) classifier)->right[i] );
 | 
						|
    }
 | 
						|
    for( i = 0; i <= count; i++ )
 | 
						|
    {
 | 
						|
        fprintf( file, "%e ", ((CvCARTHaarClassifier*) classifier)->val[i] );
 | 
						|
    }
 | 
						|
    fprintf( file, "\n" );
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
CvIntHaarClassifier* icvLoadCARTHaarClassifier( FILE* file, int step )
 | 
						|
{
 | 
						|
    CvCARTHaarClassifier* ptr;
 | 
						|
    int i;
 | 
						|
    int count;
 | 
						|
 | 
						|
    ptr = NULL;
 | 
						|
    int values_read = fscanf( file, "%d", &count );
 | 
						|
    CV_Assert(values_read == 1);
 | 
						|
 | 
						|
    if( count > 0 )
 | 
						|
    {
 | 
						|
        ptr = (CvCARTHaarClassifier*) icvCreateCARTHaarClassifier( count );
 | 
						|
        for( i = 0; i < count; i++ )
 | 
						|
        {
 | 
						|
            icvLoadHaarFeature( &(ptr->feature[i]), file );
 | 
						|
            values_read = fscanf( file, "%f %d %d", &(ptr->threshold[i]), &(ptr->left[i]),
 | 
						|
                                      &(ptr->right[i]) );
 | 
						|
            CV_Assert(values_read == 3);
 | 
						|
        }
 | 
						|
        for( i = 0; i <= count; i++ )
 | 
						|
        {
 | 
						|
            values_read = fscanf( file, "%f", &(ptr->val[i]) );
 | 
						|
            CV_Assert(values_read == 1);
 | 
						|
        }
 | 
						|
        icvConvertToFastHaarFeature( ptr->feature, ptr->fastfeature, ptr->count, step );
 | 
						|
    }
 | 
						|
 | 
						|
    return (CvIntHaarClassifier*) ptr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void icvSaveStageHaarClassifier( CvIntHaarClassifier* classifier, FILE* file )
 | 
						|
{
 | 
						|
    int count;
 | 
						|
    int i;
 | 
						|
    float threshold;
 | 
						|
 | 
						|
    count = ((CvStageHaarClassifier*) classifier)->count;
 | 
						|
    fprintf( file, "%d\n", count );
 | 
						|
    for( i = 0; i < count; i++ )
 | 
						|
    {
 | 
						|
        ((CvStageHaarClassifier*) classifier)->classifier[i]->save(
 | 
						|
            ((CvStageHaarClassifier*) classifier)->classifier[i], file );
 | 
						|
    }
 | 
						|
 | 
						|
    threshold = ((CvStageHaarClassifier*) classifier)->threshold;
 | 
						|
 | 
						|
    /* to be compatible with the previous implementation */
 | 
						|
    /* threshold = 2.0F * ((CvStageHaarClassifier*) classifier)->threshold - count; */
 | 
						|
 | 
						|
    fprintf( file, "%e\n", threshold );
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static CvIntHaarClassifier* icvLoadCARTStageHaarClassifierF( FILE* file, int step )
 | 
						|
{
 | 
						|
    CvStageHaarClassifier* ptr = NULL;
 | 
						|
 | 
						|
    //CV_FUNCNAME( "icvLoadCARTStageHaarClassifierF" );
 | 
						|
 | 
						|
    __BEGIN__;
 | 
						|
 | 
						|
    if( file != NULL )
 | 
						|
    {
 | 
						|
        int count;
 | 
						|
        int i;
 | 
						|
        float threshold;
 | 
						|
 | 
						|
        count = 0;
 | 
						|
        int values_read = fscanf( file, "%d", &count );
 | 
						|
        CV_Assert(values_read == 1);
 | 
						|
        if( count > 0 )
 | 
						|
        {
 | 
						|
            ptr = (CvStageHaarClassifier*) icvCreateStageHaarClassifier( count, 0.0F );
 | 
						|
            for( i = 0; i < count; i++ )
 | 
						|
            {
 | 
						|
                ptr->classifier[i] = icvLoadCARTHaarClassifier( file, step );
 | 
						|
            }
 | 
						|
 | 
						|
            values_read = fscanf( file, "%f", &threshold );
 | 
						|
            CV_Assert(values_read == 1);
 | 
						|
 | 
						|
            ptr->threshold = threshold;
 | 
						|
            /* to be compatible with the previous implementation */
 | 
						|
            /* ptr->threshold = 0.5F * (threshold + count); */
 | 
						|
        }
 | 
						|
        if( feof( file ) )
 | 
						|
        {
 | 
						|
            ptr->release( (CvIntHaarClassifier**) &ptr );
 | 
						|
            ptr = NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    __END__;
 | 
						|
 | 
						|
    return (CvIntHaarClassifier*) ptr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
CvIntHaarClassifier* icvLoadCARTStageHaarClassifier( const char* filename, int step )
 | 
						|
{
 | 
						|
    CvIntHaarClassifier* ptr = NULL;
 | 
						|
 | 
						|
    CV_FUNCNAME( "icvLoadCARTStageHaarClassifier" );
 | 
						|
 | 
						|
    __BEGIN__;
 | 
						|
 | 
						|
    FILE* file;
 | 
						|
 | 
						|
    file = fopen( filename, "r" );
 | 
						|
    if( file )
 | 
						|
    {
 | 
						|
        CV_CALL( ptr = icvLoadCARTStageHaarClassifierF( file, step ) );
 | 
						|
        fclose( file );
 | 
						|
    }
 | 
						|
 | 
						|
    __END__;
 | 
						|
 | 
						|
    return ptr;
 | 
						|
}
 | 
						|
 | 
						|
/* tree cascade classifier */
 | 
						|
 | 
						|
/* evaluates a tree cascade classifier */
 | 
						|
 | 
						|
float icvEvalTreeCascadeClassifier( CvIntHaarClassifier* classifier,
 | 
						|
                                    sum_type* sum, sum_type* tilted, float normfactor )
 | 
						|
{
 | 
						|
    CvTreeCascadeNode* ptr;
 | 
						|
 | 
						|
    ptr = ((CvTreeCascadeClassifier*) classifier)->root;
 | 
						|
 | 
						|
    while( ptr )
 | 
						|
    {
 | 
						|
        if( ptr->stage->eval( (CvIntHaarClassifier*) ptr->stage,
 | 
						|
                              sum, tilted, normfactor )
 | 
						|
                >= ptr->stage->threshold - CV_THRESHOLD_EPS )
 | 
						|
        {
 | 
						|
            ptr = ptr->child;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            while( ptr && ptr->next == NULL ) ptr = ptr->parent;
 | 
						|
            if( ptr == NULL ) return 0.0F;
 | 
						|
            ptr = ptr->next;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 1.0F;
 | 
						|
}
 | 
						|
 | 
						|
/* sets path int the tree form the root to the leaf node */
 | 
						|
 | 
						|
void icvSetLeafNode( CvTreeCascadeClassifier* tcc, CvTreeCascadeNode* leaf )
 | 
						|
{
 | 
						|
    CV_FUNCNAME( "icvSetLeafNode" );
 | 
						|
 | 
						|
    __BEGIN__;
 | 
						|
 | 
						|
    CvTreeCascadeNode* ptr;
 | 
						|
 | 
						|
    ptr = NULL;
 | 
						|
    while( leaf )
 | 
						|
    {
 | 
						|
        leaf->child_eval = ptr;
 | 
						|
        ptr = leaf;
 | 
						|
        leaf = leaf->parent;
 | 
						|
    }
 | 
						|
 | 
						|
    leaf = tcc->root;
 | 
						|
    while( leaf && leaf != ptr ) leaf = leaf->next;
 | 
						|
    if( leaf != ptr )
 | 
						|
        CV_ERROR( CV_StsError, "Invalid tcc or leaf node." );
 | 
						|
 | 
						|
    tcc->root_eval = ptr;
 | 
						|
 | 
						|
    __END__;
 | 
						|
}
 | 
						|
 | 
						|
/* evaluates a tree cascade classifier. used in filtering */
 | 
						|
 | 
						|
float icvEvalTreeCascadeClassifierFilter( CvIntHaarClassifier* classifier, sum_type* sum,
 | 
						|
                                          sum_type* tilted, float normfactor )
 | 
						|
{
 | 
						|
    CvTreeCascadeNode* ptr;
 | 
						|
    //CvTreeCascadeClassifier* tree;
 | 
						|
 | 
						|
    //tree = (CvTreeCascadeClassifier*) classifier;
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    ptr = ((CvTreeCascadeClassifier*) classifier)->root_eval;
 | 
						|
    while( ptr )
 | 
						|
    {
 | 
						|
        if( ptr->stage->eval( (CvIntHaarClassifier*) ptr->stage,
 | 
						|
                              sum, tilted, normfactor )
 | 
						|
                < ptr->stage->threshold - CV_THRESHOLD_EPS )
 | 
						|
        {
 | 
						|
            return 0.0F;
 | 
						|
        }
 | 
						|
        ptr = ptr->child_eval;
 | 
						|
    }
 | 
						|
 | 
						|
    return 1.0F;
 | 
						|
}
 | 
						|
 | 
						|
/* creates tree cascade node */
 | 
						|
 | 
						|
CvTreeCascadeNode* icvCreateTreeCascadeNode()
 | 
						|
{
 | 
						|
    CvTreeCascadeNode* ptr = NULL;
 | 
						|
 | 
						|
    CV_FUNCNAME( "icvCreateTreeCascadeNode" );
 | 
						|
 | 
						|
    __BEGIN__;
 | 
						|
    size_t data_size;
 | 
						|
 | 
						|
    data_size = sizeof( *ptr );
 | 
						|
    CV_CALL( ptr = (CvTreeCascadeNode*) cvAlloc( data_size ) );
 | 
						|
    memset( ptr, 0, data_size );
 | 
						|
 | 
						|
    __END__;
 | 
						|
 | 
						|
    return ptr;
 | 
						|
}
 | 
						|
 | 
						|
/* releases all tree cascade nodes accessible via links */
 | 
						|
 | 
						|
void icvReleaseTreeCascadeNodes( CvTreeCascadeNode** node )
 | 
						|
{
 | 
						|
    //CV_FUNCNAME( "icvReleaseTreeCascadeNodes" );
 | 
						|
 | 
						|
    __BEGIN__;
 | 
						|
 | 
						|
    if( node && *node )
 | 
						|
    {
 | 
						|
        CvTreeCascadeNode* ptr;
 | 
						|
        CvTreeCascadeNode* ptr_;
 | 
						|
 | 
						|
        ptr = *node;
 | 
						|
 | 
						|
        while( ptr )
 | 
						|
        {
 | 
						|
            while( ptr->child ) ptr = ptr->child;
 | 
						|
 | 
						|
            if( ptr->stage ) ptr->stage->release( (CvIntHaarClassifier**) &ptr->stage );
 | 
						|
            ptr_ = ptr;
 | 
						|
 | 
						|
            while( ptr && ptr->next == NULL ) ptr = ptr->parent;
 | 
						|
            if( ptr ) ptr = ptr->next;
 | 
						|
 | 
						|
            cvFree( &ptr_ );
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    __END__;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* releases tree cascade classifier */
 | 
						|
 | 
						|
void icvReleaseTreeCascadeClassifier( CvIntHaarClassifier** classifier )
 | 
						|
{
 | 
						|
    if( classifier && *classifier )
 | 
						|
    {
 | 
						|
        icvReleaseTreeCascadeNodes( &((CvTreeCascadeClassifier*) *classifier)->root );
 | 
						|
        cvFree( classifier );
 | 
						|
        *classifier = NULL;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void icvPrintTreeCascade( CvTreeCascadeNode* root )
 | 
						|
{
 | 
						|
    //CV_FUNCNAME( "icvPrintTreeCascade" );
 | 
						|
 | 
						|
    __BEGIN__;
 | 
						|
 | 
						|
    CvTreeCascadeNode* node;
 | 
						|
    CvTreeCascadeNode* n;
 | 
						|
    char buf0[256];
 | 
						|
    char buf[256];
 | 
						|
    int level;
 | 
						|
    int i;
 | 
						|
    int max_level;
 | 
						|
 | 
						|
    node = root;
 | 
						|
    level = max_level = 0;
 | 
						|
    while( node )
 | 
						|
    {
 | 
						|
        while( node->child ) { node = node->child; level++; }
 | 
						|
        if( level > max_level ) { max_level = level; }
 | 
						|
        while( node && !node->next ) { node = node->parent; level--; }
 | 
						|
        if( node ) node = node->next;
 | 
						|
    }
 | 
						|
 | 
						|
    printf( "\nTree Classifier\n" );
 | 
						|
    printf( "Stage\n" );
 | 
						|
    for( i = 0; i <= max_level; i++ ) printf( "+---" );
 | 
						|
    printf( "+\n" );
 | 
						|
    for( i = 0; i <= max_level; i++ ) printf( "|%3d", i );
 | 
						|
    printf( "|\n" );
 | 
						|
    for( i = 0; i <= max_level; i++ ) printf( "+---" );
 | 
						|
    printf( "+\n\n" );
 | 
						|
 | 
						|
    node = root;
 | 
						|
 | 
						|
    buf[0] = 0;
 | 
						|
    while( node )
 | 
						|
    {
 | 
						|
        sprintf( buf + strlen( buf ), "%3d", node->idx );
 | 
						|
        while( node->child )
 | 
						|
        {
 | 
						|
            node = node->child;
 | 
						|
            sprintf( buf + strlen( buf ),
 | 
						|
                ((node->idx < 10) ? "---%d" : ((node->idx < 100) ? "--%d" : "-%d")),
 | 
						|
                node->idx );
 | 
						|
        }
 | 
						|
        printf( " %s\n", buf );
 | 
						|
 | 
						|
        while( node && !node->next ) { node = node->parent; }
 | 
						|
        if( node )
 | 
						|
        {
 | 
						|
            node = node->next;
 | 
						|
 | 
						|
            n = node->parent;
 | 
						|
            buf[0] = 0;
 | 
						|
            while( n )
 | 
						|
            {
 | 
						|
                if( n->next )
 | 
						|
                    sprintf( buf0, "  | %s", buf );
 | 
						|
                else
 | 
						|
                    sprintf( buf0, "    %s", buf );
 | 
						|
                strcpy( buf, buf0 );
 | 
						|
                n = n->parent;
 | 
						|
            }
 | 
						|
            printf( " %s  |\n", buf );
 | 
						|
        }
 | 
						|
    }
 | 
						|
    printf( "\n" );
 | 
						|
    fflush( stdout );
 | 
						|
 | 
						|
    __END__;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
CvIntHaarClassifier* icvLoadTreeCascadeClassifier( const char* filename, int step,
 | 
						|
                                                   int* splits )
 | 
						|
{
 | 
						|
    CvTreeCascadeClassifier* ptr = NULL;
 | 
						|
    CvTreeCascadeNode** nodes = NULL;
 | 
						|
 | 
						|
    CV_FUNCNAME( "icvLoadTreeCascadeClassifier" );
 | 
						|
 | 
						|
    __BEGIN__;
 | 
						|
 | 
						|
    size_t data_size;
 | 
						|
    CvStageHaarClassifier* stage;
 | 
						|
    char stage_name[PATH_MAX];
 | 
						|
    char* suffix;
 | 
						|
    int i, num;
 | 
						|
    FILE* f;
 | 
						|
    int result, parent=0, next=0;
 | 
						|
    int stub;
 | 
						|
 | 
						|
    if( !splits ) splits = &stub;
 | 
						|
 | 
						|
    *splits = 0;
 | 
						|
 | 
						|
    data_size = sizeof( *ptr );
 | 
						|
 | 
						|
    CV_CALL( ptr = (CvTreeCascadeClassifier*) cvAlloc( data_size ) );
 | 
						|
    memset( ptr, 0, data_size );
 | 
						|
 | 
						|
    ptr->eval = icvEvalTreeCascadeClassifier;
 | 
						|
    ptr->release = icvReleaseTreeCascadeClassifier;
 | 
						|
 | 
						|
    sprintf( stage_name, "%s/", filename );
 | 
						|
    suffix = stage_name + strlen( stage_name );
 | 
						|
 | 
						|
    for( i = 0; ; i++ )
 | 
						|
    {
 | 
						|
        sprintf( suffix, "%d/%s", i, CV_STAGE_CART_FILE_NAME );
 | 
						|
        f = fopen( stage_name, "r" );
 | 
						|
        if( !f ) break;
 | 
						|
        fclose( f );
 | 
						|
    }
 | 
						|
    num = i;
 | 
						|
 | 
						|
    if( num < 1 ) EXIT;
 | 
						|
 | 
						|
    data_size = sizeof( *nodes ) * num;
 | 
						|
    CV_CALL( nodes = (CvTreeCascadeNode**) cvAlloc( data_size ) );
 | 
						|
 | 
						|
    for( i = 0; i < num; i++ )
 | 
						|
    {
 | 
						|
        sprintf( suffix, "%d/%s", i, CV_STAGE_CART_FILE_NAME );
 | 
						|
        f = fopen( stage_name, "r" );
 | 
						|
        CV_CALL( stage = (CvStageHaarClassifier*)
 | 
						|
            icvLoadCARTStageHaarClassifierF( f, step ) );
 | 
						|
 | 
						|
        result = ( f && stage ) ? fscanf( f, "%d%d", &parent, &next ) : 0;
 | 
						|
        if( f ) fclose( f );
 | 
						|
 | 
						|
        if( result != 2 )
 | 
						|
        {
 | 
						|
            num = i;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        printf( "Stage %d loaded\n", i );
 | 
						|
 | 
						|
        if( parent >= i || (next != -1 && next != i + 1) )
 | 
						|
            CV_ERROR( CV_StsError, "Invalid tree links" );
 | 
						|
 | 
						|
        CV_CALL( nodes[i] = icvCreateTreeCascadeNode() );
 | 
						|
        nodes[i]->stage = stage;
 | 
						|
        nodes[i]->idx = i;
 | 
						|
        nodes[i]->parent = (parent != -1 ) ? nodes[parent] : NULL;
 | 
						|
        nodes[i]->next = ( next != -1 ) ? nodes[i] : NULL;
 | 
						|
        nodes[i]->child = NULL;
 | 
						|
    }
 | 
						|
    for( i = 0; i < num; i++ )
 | 
						|
    {
 | 
						|
        if( nodes[i]->next )
 | 
						|
        {
 | 
						|
            (*splits)++;
 | 
						|
            nodes[i]->next = nodes[i+1];
 | 
						|
        }
 | 
						|
        if( nodes[i]->parent && nodes[i]->parent->child == NULL )
 | 
						|
        {
 | 
						|
            nodes[i]->parent->child = nodes[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ptr->root = nodes[0];
 | 
						|
    ptr->next_idx = num;
 | 
						|
 | 
						|
    __END__;
 | 
						|
 | 
						|
    cvFree( &nodes );
 | 
						|
 | 
						|
    return (CvIntHaarClassifier*) ptr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
CvTreeCascadeNode* icvFindDeepestLeaves( CvTreeCascadeClassifier* tcc )
 | 
						|
{
 | 
						|
    CvTreeCascadeNode* leaves;
 | 
						|
 | 
						|
    //CV_FUNCNAME( "icvFindDeepestLeaves" );
 | 
						|
 | 
						|
    __BEGIN__;
 | 
						|
 | 
						|
    int level, cur_level;
 | 
						|
    CvTreeCascadeNode* ptr;
 | 
						|
    CvTreeCascadeNode* last;
 | 
						|
 | 
						|
    leaves = last = NULL;
 | 
						|
 | 
						|
    ptr = tcc->root;
 | 
						|
    level = -1;
 | 
						|
    cur_level = 0;
 | 
						|
 | 
						|
    /* find leaves with maximal level */
 | 
						|
    while( ptr )
 | 
						|
    {
 | 
						|
        if( ptr->child ) { ptr = ptr->child; cur_level++; }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            if( cur_level == level )
 | 
						|
            {
 | 
						|
                last->next_same_level = ptr;
 | 
						|
                ptr->next_same_level = NULL;
 | 
						|
                last = ptr;
 | 
						|
            }
 | 
						|
            if( cur_level > level )
 | 
						|
            {
 | 
						|
                level = cur_level;
 | 
						|
                leaves = last = ptr;
 | 
						|
                ptr->next_same_level = NULL;
 | 
						|
            }
 | 
						|
            while( ptr && ptr->next == NULL ) { ptr = ptr->parent; cur_level--; }
 | 
						|
            if( ptr ) ptr = ptr->next;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    __END__;
 | 
						|
 | 
						|
    return leaves;
 | 
						|
}
 | 
						|
 | 
						|
/* End of file. */
 |