118 lines
4.0 KiB
C++
118 lines
4.0 KiB
C++
/*
|
|
* one_way_sample.cpp
|
|
* outlet_detection
|
|
*
|
|
* Created by Victor Eruhimov on 8/5/09.
|
|
* Copyright 2009 Argus Corp. All rights reserved.
|
|
*
|
|
*/
|
|
|
|
#include "opencv2/imgproc/imgproc.hpp"
|
|
#include "opencv2/features2d/features2d.hpp"
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
#include "opencv2/imgproc/imgproc_c.h"
|
|
|
|
#include <string>
|
|
void help()
|
|
{
|
|
printf("\nThis program demonstrates the one way interest point descriptor found in features2d.hpp\n"
|
|
"Correspondences are drawn\n");
|
|
printf("Format: \n./one_way_sample [path_to_samples] [image1] [image2]\n");
|
|
printf("For example: ./one_way_sample ../../../opencv/samples/c scene_l.bmp scene_r.bmp\n");
|
|
}
|
|
|
|
using namespace cv;
|
|
|
|
IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, IplImage* img2,
|
|
const vector<KeyPoint>& features2, const vector<int>& desc_idx);
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
const char images_list[] = "one_way_train_images.txt";
|
|
const CvSize patch_size = cvSize(24, 24);
|
|
const int pose_count = 50;
|
|
|
|
if (argc != 3 && argc != 4)
|
|
{
|
|
help();
|
|
return 0;
|
|
}
|
|
|
|
std::string path_name = argv[1];
|
|
std::string img1_name = path_name + "/" + std::string(argv[2]);
|
|
std::string img2_name = path_name + "/" + std::string(argv[3]);
|
|
|
|
printf("Reading the images...\n");
|
|
IplImage* img1 = cvLoadImage(img1_name.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
|
|
IplImage* img2 = cvLoadImage(img2_name.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
|
|
|
|
// extract keypoints from the first image
|
|
SURF surf_extractor(5.0e3);
|
|
vector<KeyPoint> keypoints1;
|
|
|
|
// printf("Extracting keypoints\n");
|
|
surf_extractor(img1, Mat(), keypoints1);
|
|
|
|
printf("Extracted %d keypoints...\n", (int)keypoints1.size());
|
|
|
|
printf("Training one way descriptors... \n");
|
|
// create descriptors
|
|
OneWayDescriptorBase descriptors(patch_size, pose_count, OneWayDescriptorBase::GetPCAFilename(), path_name,
|
|
images_list);
|
|
descriptors.CreateDescriptorsFromImage(img1, keypoints1);
|
|
printf("done\n");
|
|
|
|
// extract keypoints from the second image
|
|
vector<KeyPoint> keypoints2;
|
|
surf_extractor(img2, Mat(), keypoints2);
|
|
printf("Extracted %d keypoints from the second image...\n", (int)keypoints2.size());
|
|
|
|
printf("Finding nearest neighbors...");
|
|
// find NN for each of keypoints2 in keypoints1
|
|
vector<int> desc_idx;
|
|
desc_idx.resize(keypoints2.size());
|
|
for (size_t i = 0; i < keypoints2.size(); i++)
|
|
{
|
|
int pose_idx = 0;
|
|
float distance = 0;
|
|
descriptors.FindDescriptor(img2, keypoints2[i].pt, desc_idx[i], pose_idx, distance);
|
|
}
|
|
printf("done\n");
|
|
|
|
IplImage* img_corr = DrawCorrespondences(img1, keypoints1, img2, keypoints2, desc_idx);
|
|
|
|
cvNamedWindow("correspondences", 1);
|
|
cvShowImage("correspondences", img_corr);
|
|
cvWaitKey(0);
|
|
|
|
cvReleaseImage(&img1);
|
|
cvReleaseImage(&img2);
|
|
cvReleaseImage(&img_corr);
|
|
}
|
|
|
|
IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, IplImage* img2,
|
|
const vector<KeyPoint>& features2, const vector<int>& desc_idx)
|
|
{
|
|
IplImage* img_corr = cvCreateImage(cvSize(img1->width + img2->width, MAX(img1->height, img2->height)),
|
|
IPL_DEPTH_8U, 3);
|
|
cvSetImageROI(img_corr, cvRect(0, 0, img1->width, img1->height));
|
|
cvCvtColor(img1, img_corr, CV_GRAY2RGB);
|
|
cvSetImageROI(img_corr, cvRect(img1->width, 0, img2->width, img2->height));
|
|
cvCvtColor(img2, img_corr, CV_GRAY2RGB);
|
|
cvResetImageROI(img_corr);
|
|
|
|
for (size_t i = 0; i < features1.size(); i++)
|
|
{
|
|
cvCircle(img_corr, features1[i].pt, 3, CV_RGB(255, 0, 0));
|
|
}
|
|
|
|
for (size_t i = 0; i < features2.size(); i++)
|
|
{
|
|
CvPoint pt = cvPoint((int)features2[i].pt.x + img1->width, (int)features2[i].pt.y);
|
|
cvCircle(img_corr, pt, 3, CV_RGB(255, 0, 0));
|
|
cvLine(img_corr, features1[desc_idx[i]].pt, pt, CV_RGB(0, 255, 0));
|
|
}
|
|
|
|
return img_corr;
|
|
}
|