622 lines
16 KiB
C++
622 lines
16 KiB
C++
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#ifndef _OPENCV_KDTREE_H_
|
|
#define _OPENCV_KDTREE_H_
|
|
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <cassert>
|
|
#include <cstring>
|
|
|
|
#include "opencv2/flann/general.h"
|
|
#include "opencv2/flann/nn_index.h"
|
|
#include "opencv2/flann/matrix.h"
|
|
#include "opencv2/flann/result_set.h"
|
|
#include "opencv2/flann/heap.h"
|
|
#include "opencv2/flann/allocator.h"
|
|
#include "opencv2/flann/random.h"
|
|
#include "opencv2/flann/saving.h"
|
|
|
|
|
|
namespace cvflann
|
|
{
|
|
|
|
struct CV_EXPORTS KDTreeIndexParams : public IndexParams {
|
|
KDTreeIndexParams(int trees_ = 4) : IndexParams(FLANN_INDEX_KDTREE), trees(trees_) {};
|
|
|
|
int trees; // number of randomized trees to use (for kdtree)
|
|
|
|
void print() const
|
|
{
|
|
logger().info("Index type: %d\n",(int)algorithm);
|
|
logger().info("Trees: %d\n", trees);
|
|
}
|
|
|
|
};
|
|
|
|
|
|
/**
|
|
* Randomized kd-tree index
|
|
*
|
|
* Contains the k-d trees and other information for indexing a set of points
|
|
* for nearest-neighbor matching.
|
|
*/
|
|
template <typename ELEM_TYPE, typename DIST_TYPE = typename DistType<ELEM_TYPE>::type >
|
|
class KDTreeIndex : public NNIndex<ELEM_TYPE>
|
|
{
|
|
|
|
enum {
|
|
/**
|
|
* To improve efficiency, only SAMPLE_MEAN random values are used to
|
|
* compute the mean and variance at each level when building a tree.
|
|
* A value of 100 seems to perform as well as using all values.
|
|
*/
|
|
SAMPLE_MEAN = 100,
|
|
/**
|
|
* Top random dimensions to consider
|
|
*
|
|
* When creating random trees, the dimension on which to subdivide is
|
|
* selected at random from among the top RAND_DIM dimensions with the
|
|
* highest variance. A value of 5 works well.
|
|
*/
|
|
RAND_DIM=5
|
|
};
|
|
|
|
|
|
/**
|
|
* Number of randomized trees that are used
|
|
*/
|
|
int numTrees;
|
|
|
|
/**
|
|
* Array of indices to vectors in the dataset.
|
|
*/
|
|
int* vind;
|
|
|
|
|
|
/**
|
|
* The dataset used by this index
|
|
*/
|
|
const Matrix<ELEM_TYPE> dataset;
|
|
|
|
const IndexParams& index_params;
|
|
|
|
size_t size_;
|
|
size_t veclen_;
|
|
|
|
|
|
DIST_TYPE* mean;
|
|
DIST_TYPE* var;
|
|
|
|
|
|
/*--------------------- Internal Data Structures --------------------------*/
|
|
|
|
/**
|
|
* A node of the binary k-d tree.
|
|
*
|
|
* This is All nodes that have vec[divfeat] < divval are placed in the
|
|
* child1 subtree, else child2., A leaf node is indicated if both children are NULL.
|
|
*/
|
|
struct TreeSt {
|
|
/**
|
|
* Index of the vector feature used for subdivision.
|
|
* If this is a leaf node (both children are NULL) then
|
|
* this holds vector index for this leaf.
|
|
*/
|
|
int divfeat;
|
|
/**
|
|
* The value used for subdivision.
|
|
*/
|
|
DIST_TYPE divval;
|
|
/**
|
|
* The child nodes.
|
|
*/
|
|
TreeSt *child1, *child2;
|
|
};
|
|
typedef TreeSt* Tree;
|
|
|
|
/**
|
|
* Array of k-d trees used to find neighbours.
|
|
*/
|
|
Tree* trees;
|
|
typedef BranchStruct<Tree> BranchSt;
|
|
typedef BranchSt* Branch;
|
|
|
|
/**
|
|
* Pooled memory allocator.
|
|
*
|
|
* Using a pooled memory allocator is more efficient
|
|
* than allocating memory directly when there is a large
|
|
* number small of memory allocations.
|
|
*/
|
|
PooledAllocator pool;
|
|
|
|
|
|
|
|
public:
|
|
|
|
flann_algorithm_t getType() const
|
|
{
|
|
return FLANN_INDEX_KDTREE;
|
|
}
|
|
|
|
/**
|
|
* KDTree constructor
|
|
*
|
|
* Params:
|
|
* inputData = dataset with the input features
|
|
* params = parameters passed to the kdtree algorithm
|
|
*/
|
|
KDTreeIndex(const Matrix<ELEM_TYPE>& inputData, const KDTreeIndexParams& params = KDTreeIndexParams() ) :
|
|
dataset(inputData), index_params(params)
|
|
{
|
|
size_ = dataset.rows;
|
|
veclen_ = dataset.cols;
|
|
|
|
numTrees = params.trees;
|
|
trees = new Tree[numTrees];
|
|
|
|
// get the parameters
|
|
// if (params.find("trees") != params.end()) {
|
|
// numTrees = (int)params["trees"];
|
|
// trees = new Tree[numTrees];
|
|
// }
|
|
// else {
|
|
// numTrees = -1;
|
|
// trees = NULL;
|
|
// }
|
|
|
|
// Create a permutable array of indices to the input vectors.
|
|
vind = new int[size_];
|
|
for (size_t i = 0; i < size_; i++) {
|
|
vind[i] = (int)i;
|
|
}
|
|
|
|
mean = new DIST_TYPE[veclen_];
|
|
var = new DIST_TYPE[veclen_];
|
|
}
|
|
|
|
/**
|
|
* Standard destructor
|
|
*/
|
|
~KDTreeIndex()
|
|
{
|
|
delete[] vind;
|
|
if (trees!=NULL) {
|
|
delete[] trees;
|
|
}
|
|
delete[] mean;
|
|
delete[] var;
|
|
}
|
|
|
|
|
|
/**
|
|
* Builds the index
|
|
*/
|
|
void buildIndex()
|
|
{
|
|
/* Construct the randomized trees. */
|
|
for (int i = 0; i < numTrees; i++) {
|
|
/* Randomize the order of vectors to allow for unbiased sampling. */
|
|
for (int j = (int)size_; j > 0; --j) {
|
|
int rnd = rand_int(j);
|
|
std::swap(vind[j-1], vind[rnd]);
|
|
}
|
|
trees[i] = divideTree(0, (int)size_ - 1);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void saveIndex(FILE* stream)
|
|
{
|
|
save_value(stream, numTrees);
|
|
for (int i=0;i<numTrees;++i) {
|
|
save_tree(stream, trees[i]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void loadIndex(FILE* stream)
|
|
{
|
|
load_value(stream, numTrees);
|
|
|
|
if (trees!=NULL) {
|
|
delete[] trees;
|
|
}
|
|
trees = new Tree[numTrees];
|
|
for (int i=0;i<numTrees;++i) {
|
|
load_tree(stream,trees[i]);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Returns size of index.
|
|
*/
|
|
size_t size() const
|
|
{
|
|
return size_;
|
|
}
|
|
|
|
/**
|
|
* Returns the length of an index feature.
|
|
*/
|
|
size_t veclen() const
|
|
{
|
|
return veclen_;
|
|
}
|
|
|
|
|
|
/**
|
|
* Computes the inde memory usage
|
|
* Returns: memory used by the index
|
|
*/
|
|
int usedMemory() const
|
|
{
|
|
return (int)(pool.usedMemory+pool.wastedMemory+dataset.rows*sizeof(int)); // pool memory and vind array memory
|
|
}
|
|
|
|
|
|
/**
|
|
* Find set of nearest neighbors to vec. Their indices are stored inside
|
|
* the result object.
|
|
*
|
|
* Params:
|
|
* result = the result object in which the indices of the nearest-neighbors are stored
|
|
* vec = the vector for which to search the nearest neighbors
|
|
* maxCheck = the maximum number of restarts (in a best-bin-first manner)
|
|
*/
|
|
void findNeighbors(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, const SearchParams& searchParams)
|
|
{
|
|
int maxChecks = searchParams.checks;
|
|
|
|
if (maxChecks<0) {
|
|
getExactNeighbors(result, vec);
|
|
} else {
|
|
getNeighbors(result, vec, maxChecks);
|
|
}
|
|
}
|
|
|
|
const IndexParams* getParameters() const
|
|
{
|
|
return &index_params;
|
|
}
|
|
|
|
private:
|
|
|
|
KDTreeIndex& operator=(const KDTreeIndex&);
|
|
KDTreeIndex(const KDTreeIndex&);
|
|
|
|
|
|
void save_tree(FILE* stream, Tree tree)
|
|
{
|
|
save_value(stream, *tree);
|
|
if (tree->child1!=NULL) {
|
|
save_tree(stream, tree->child1);
|
|
}
|
|
if (tree->child2!=NULL) {
|
|
save_tree(stream, tree->child2);
|
|
}
|
|
}
|
|
|
|
|
|
void load_tree(FILE* stream, Tree& tree)
|
|
{
|
|
tree = pool.allocate<TreeSt>();
|
|
load_value(stream, *tree);
|
|
if (tree->child1!=NULL) {
|
|
load_tree(stream, tree->child1);
|
|
}
|
|
if (tree->child2!=NULL) {
|
|
load_tree(stream, tree->child2);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Create a tree node that subdivides the list of vecs from vind[first]
|
|
* to vind[last]. The routine is called recursively on each sublist.
|
|
* Place a pointer to this new tree node in the location pTree.
|
|
*
|
|
* Params: pTree = the new node to create
|
|
* first = index of the first vector
|
|
* last = index of the last vector
|
|
*/
|
|
Tree divideTree(int first, int last)
|
|
{
|
|
Tree node = pool.allocate<TreeSt>(); // allocate memory
|
|
|
|
/* If only one exemplar remains, then make this a leaf node. */
|
|
if (first == last) {
|
|
node->child1 = node->child2 = NULL; /* Mark as leaf node. */
|
|
node->divfeat = vind[first]; /* Store index of this vec. */
|
|
}
|
|
else {
|
|
chooseDivision(node, first, last);
|
|
subdivide(node, first, last);
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
|
|
/**
|
|
* Choose which feature to use in order to subdivide this set of vectors.
|
|
* Make a random choice among those with the highest variance, and use
|
|
* its variance as the threshold value.
|
|
*/
|
|
void chooseDivision(Tree node, int first, int last)
|
|
{
|
|
memset(mean,0,veclen_*sizeof(DIST_TYPE));
|
|
memset(var,0,veclen_*sizeof(DIST_TYPE));
|
|
|
|
/* Compute mean values. Only the first SAMPLE_MEAN values need to be
|
|
sampled to get a good estimate.
|
|
*/
|
|
int end = std::min(first + SAMPLE_MEAN, last);
|
|
for (int j = first; j <= end; ++j) {
|
|
ELEM_TYPE* v = dataset[vind[j]];
|
|
for (size_t k=0; k<veclen_; ++k) {
|
|
mean[k] += v[k];
|
|
}
|
|
}
|
|
for (size_t k=0; k<veclen_; ++k) {
|
|
mean[k] /= (end - first + 1);
|
|
}
|
|
|
|
/* Compute variances (no need to divide by count). */
|
|
for (int j = first; j <= end; ++j) {
|
|
ELEM_TYPE* v = dataset[vind[j]];
|
|
for (size_t k=0; k<veclen_; ++k) {
|
|
DIST_TYPE dist = v[k] - mean[k];
|
|
var[k] += dist * dist;
|
|
}
|
|
}
|
|
/* Select one of the highest variance indices at random. */
|
|
node->divfeat = selectDivision(var);
|
|
node->divval = mean[node->divfeat];
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* Select the top RAND_DIM largest values from v and return the index of
|
|
* one of these selected at random.
|
|
*/
|
|
int selectDivision(DIST_TYPE* v)
|
|
{
|
|
int num = 0;
|
|
int topind[RAND_DIM];
|
|
|
|
/* Create a list of the indices of the top RAND_DIM values. */
|
|
for (size_t i = 0; i < veclen_; ++i) {
|
|
if (num < RAND_DIM || v[i] > v[topind[num-1]]) {
|
|
/* Put this element at end of topind. */
|
|
if (num < RAND_DIM) {
|
|
topind[num++] = (int)i; /* Add to list. */
|
|
}
|
|
else {
|
|
topind[num-1] = (int)i; /* Replace last element. */
|
|
}
|
|
/* Bubble end value down to right location by repeated swapping. */
|
|
int j = num - 1;
|
|
while (j > 0 && v[topind[j]] > v[topind[j-1]]) {
|
|
std::swap(topind[j], topind[j-1]);
|
|
--j;
|
|
}
|
|
}
|
|
}
|
|
/* Select a random integer in range [0,num-1], and return that index. */
|
|
int rnd = rand_int(num);
|
|
return topind[rnd];
|
|
}
|
|
|
|
|
|
/**
|
|
* Subdivide the list of exemplars using the feature and division
|
|
* value given in this node. Call divideTree recursively on each list.
|
|
*/
|
|
void subdivide(Tree node, int first, int last)
|
|
{
|
|
/* Move vector indices for left subtree to front of list. */
|
|
int i = first;
|
|
int j = last;
|
|
while (i <= j) {
|
|
int ind = vind[i];
|
|
ELEM_TYPE val = dataset[ind][node->divfeat];
|
|
if (val < node->divval) {
|
|
++i;
|
|
} else {
|
|
/* Move to end of list by swapping vind i and j. */
|
|
std::swap(vind[i], vind[j]);
|
|
--j;
|
|
}
|
|
}
|
|
/* If either list is empty, it means we have hit the unlikely case
|
|
in which all remaining features are identical. Split in the middle
|
|
to maintain a balanced tree.
|
|
*/
|
|
if ( (i == first) || (i == last+1)) {
|
|
i = (first+last+1)/2;
|
|
}
|
|
|
|
node->child1 = divideTree(first, i - 1);
|
|
node->child2 = divideTree(i, last);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Performs an exact nearest neighbor search. The exact search performs a full
|
|
* traversal of the tree.
|
|
*/
|
|
void getExactNeighbors(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec)
|
|
{
|
|
// checkID -= 1; /* Set a different unique ID for each search. */
|
|
|
|
if (numTrees > 1) {
|
|
fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search");
|
|
}
|
|
if (numTrees>0) {
|
|
searchLevelExact(result, vec, trees[0], 0.0);
|
|
}
|
|
assert(result.full());
|
|
}
|
|
|
|
/**
|
|
* Performs the approximate nearest-neighbor search. The search is approximate
|
|
* because the tree traversal is abandoned after a given number of descends in
|
|
* the tree.
|
|
*/
|
|
void getNeighbors(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, int maxCheck)
|
|
{
|
|
int i;
|
|
BranchSt branch;
|
|
|
|
int checkCount = 0;
|
|
Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
|
|
std::vector<bool> checked(size_,false);
|
|
|
|
/* Search once through each tree down to root. */
|
|
for (i = 0; i < numTrees; ++i) {
|
|
searchLevel(result, vec, trees[i], 0.0, checkCount, maxCheck, heap, checked);
|
|
}
|
|
|
|
/* Keep searching other branches from heap until finished. */
|
|
while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) {
|
|
searchLevel(result, vec, branch.node, branch.mindistsq, checkCount, maxCheck, heap, checked);
|
|
}
|
|
|
|
delete heap;
|
|
|
|
assert(result.full());
|
|
}
|
|
|
|
|
|
/**
|
|
* Search starting from a given node of the tree. Based on any mismatches at
|
|
* higher levels, all exemplars below this level must have a distance of
|
|
* at least "mindistsq".
|
|
*/
|
|
void searchLevel(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, Tree node, float mindistsq, int& checkCount, int maxCheck,
|
|
Heap<BranchSt>* heap, std::vector<bool>& checked)
|
|
{
|
|
if (result.worstDist()<mindistsq) {
|
|
// printf("Ignoring branch, too far\n");
|
|
return;
|
|
}
|
|
|
|
/* If this is a leaf node, then do check and return. */
|
|
if (node->child1 == NULL && node->child2 == NULL) {
|
|
|
|
/* Do not check same node more than once when searching multiple trees.
|
|
Once a vector is checked, we set its location in vind to the
|
|
current checkID.
|
|
*/
|
|
if (checked[node->divfeat] == true || checkCount>=maxCheck) {
|
|
if (result.full()) return;
|
|
}
|
|
checkCount++;
|
|
checked[node->divfeat] = true;
|
|
|
|
result.addPoint(dataset[node->divfeat],node->divfeat);
|
|
return;
|
|
}
|
|
|
|
/* Which child branch should be taken first? */
|
|
ELEM_TYPE val = vec[node->divfeat];
|
|
DIST_TYPE diff = val - node->divval;
|
|
Tree bestChild = (diff < 0) ? node->child1 : node->child2;
|
|
Tree otherChild = (diff < 0) ? node->child2 : node->child1;
|
|
|
|
/* Create a branch record for the branch not taken. Add distance
|
|
of this feature boundary (we don't attempt to correct for any
|
|
use of this feature in a parent node, which is unlikely to
|
|
happen and would have only a small effect). Don't bother
|
|
adding more branches to heap after halfway point, as cost of
|
|
adding exceeds their value.
|
|
*/
|
|
|
|
DIST_TYPE new_distsq = (DIST_TYPE)flann_dist(&val, &val+1, &node->divval, mindistsq);
|
|
// if (2 * checkCount < maxCheck || !result.full()) {
|
|
if (new_distsq < result.worstDist() || !result.full()) {
|
|
heap->insert( BranchSt::make_branch(otherChild, new_distsq) );
|
|
}
|
|
|
|
/* Call recursively to search next level down. */
|
|
searchLevel(result, vec, bestChild, mindistsq, checkCount, maxCheck, heap, checked);
|
|
}
|
|
|
|
/**
|
|
* Performs an exact search in the tree starting from a node.
|
|
*/
|
|
void searchLevelExact(ResultSet<ELEM_TYPE>& result, const ELEM_TYPE* vec, Tree node, float mindistsq)
|
|
{
|
|
if (mindistsq>result.worstDist()) {
|
|
return;
|
|
}
|
|
|
|
/* If this is a leaf node, then do check and return. */
|
|
if (node->child1 == NULL && node->child2 == NULL) {
|
|
|
|
/* Do not check same node more than once when searching multiple trees.
|
|
Once a vector is checked, we set its location in vind to the
|
|
current checkID.
|
|
*/
|
|
// if (vind[node->divfeat] == checkID)
|
|
// return;
|
|
// vind[node->divfeat] = checkID;
|
|
|
|
result.addPoint(dataset[node->divfeat],node->divfeat);
|
|
return;
|
|
}
|
|
|
|
/* Which child branch should be taken first? */
|
|
ELEM_TYPE val = vec[node->divfeat];
|
|
DIST_TYPE diff = val - node->divval;
|
|
Tree bestChild = (diff < 0) ? node->child1 : node->child2;
|
|
Tree otherChild = (diff < 0) ? node->child2 : node->child1;
|
|
|
|
|
|
/* Call recursively to search next level down. */
|
|
searchLevelExact(result, vec, bestChild, mindistsq);
|
|
DIST_TYPE new_distsq = (DIST_TYPE)flann_dist(&val, &val+1, &node->divval, mindistsq);
|
|
searchLevelExact(result, vec, otherChild, new_distsq);
|
|
}
|
|
|
|
}; // class KDTree
|
|
|
|
} // namespace cvflann
|
|
|
|
#endif //_OPENCV_KDTREE_H_
|