 57d4c86b2b
			
		
	
	57d4c86b2b
	
	
	
		
			
			Also, removed the one from modules/python/src2/cv.py and cleared its executable bit, since it's not a script.
		
			
				
	
	
		
			1708 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			1708 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python
 | |
| 
 | |
| # -*- coding: utf-8 -*-
 | |
| # transformations.py
 | |
| 
 | |
| # Copyright (c) 2006, Christoph Gohlke
 | |
| # Copyright (c) 2006-2009, The Regents of the University of California
 | |
| # All rights reserved.
 | |
| #
 | |
| # Redistribution and use in source and binary forms, with or without
 | |
| # modification, are permitted provided that the following conditions are met:
 | |
| #
 | |
| # * Redistributions of source code must retain the above copyright
 | |
| #   notice, this list of conditions and the following disclaimer.
 | |
| # * Redistributions in binary form must reproduce the above copyright
 | |
| #   notice, this list of conditions and the following disclaimer in the
 | |
| #   documentation and/or other materials provided with the distribution.
 | |
| # * Neither the name of the copyright holders nor the names of any
 | |
| #   contributors may be used to endorse or promote products derived
 | |
| #   from this software without specific prior written permission.
 | |
| #
 | |
| # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
| # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
| # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
| # ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 | |
| # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
| # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
| # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
| # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
| # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
| # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| # POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| """Homogeneous Transformation Matrices and Quaternions.
 | |
| 
 | |
| A library for calculating 4x4 matrices for translating, rotating, reflecting,
 | |
| scaling, shearing, projecting, orthogonalizing, and superimposing arrays of
 | |
| 3D homogeneous coordinates as well as for converting between rotation matrices,
 | |
| Euler angles, and quaternions. Also includes an Arcball control object and
 | |
| functions to decompose transformation matrices.
 | |
| 
 | |
| :Authors:
 | |
|   `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`__,
 | |
|   Laboratory for Fluorescence Dynamics, University of California, Irvine
 | |
| 
 | |
| :Version: 20090418
 | |
| 
 | |
| Requirements
 | |
| ------------
 | |
| 
 | |
| * `Python 2.6 <http://www.python.org>`__
 | |
| * `Numpy 1.3 <http://numpy.scipy.org>`__
 | |
| * `transformations.c 20090418 <http://www.lfd.uci.edu/~gohlke/>`__
 | |
|   (optional implementation of some functions in C)
 | |
| 
 | |
| Notes
 | |
| -----
 | |
| 
 | |
| Matrices (M) can be inverted using numpy.linalg.inv(M), concatenated using
 | |
| numpy.dot(M0, M1), or used to transform homogeneous coordinates (v) using
 | |
| numpy.dot(M, v) for shape (4, \*) "point of arrays", respectively
 | |
| numpy.dot(v, M.T) for shape (\*, 4) "array of points".
 | |
| 
 | |
| Calculations are carried out with numpy.float64 precision.
 | |
| 
 | |
| This Python implementation is not optimized for speed.
 | |
| 
 | |
| Vector, point, quaternion, and matrix function arguments are expected to be
 | |
| "array like", i.e. tuple, list, or numpy arrays.
 | |
| 
 | |
| Return types are numpy arrays unless specified otherwise.
 | |
| 
 | |
| Angles are in radians unless specified otherwise.
 | |
| 
 | |
| Quaternions ix+jy+kz+w are represented as [x, y, z, w].
 | |
| 
 | |
| Use the transpose of transformation matrices for OpenGL glMultMatrixd().
 | |
| 
 | |
| A triple of Euler angles can be applied/interpreted in 24 ways, which can
 | |
| be specified using a 4 character string or encoded 4-tuple:
 | |
| 
 | |
|   *Axes 4-string*: e.g. 'sxyz' or 'ryxy'
 | |
| 
 | |
|   - first character : rotations are applied to 's'tatic or 'r'otating frame
 | |
|   - remaining characters : successive rotation axis 'x', 'y', or 'z'
 | |
| 
 | |
|   *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1)
 | |
| 
 | |
|   - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix.
 | |
|   - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed
 | |
|     by 'z', or 'z' is followed by 'x'. Otherwise odd (1).
 | |
|   - repetition : first and last axis are same (1) or different (0).
 | |
|   - frame : rotations are applied to static (0) or rotating (1) frame.
 | |
| 
 | |
| References
 | |
| ----------
 | |
| 
 | |
| (1)  Matrices and transformations. Ronald Goldman.
 | |
|      In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990.
 | |
| (2)  More matrices and transformations: shear and pseudo-perspective.
 | |
|      Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
 | |
| (3)  Decomposing a matrix into simple transformations. Spencer Thomas.
 | |
|      In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
 | |
| (4)  Recovering the data from the transformation matrix. Ronald Goldman.
 | |
|      In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991.
 | |
| (5)  Euler angle conversion. Ken Shoemake.
 | |
|      In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994.
 | |
| (6)  Arcball rotation control. Ken Shoemake.
 | |
|      In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994.
 | |
| (7)  Representing attitude: Euler angles, unit quaternions, and rotation
 | |
|      vectors. James Diebel. 2006.
 | |
| (8)  A discussion of the solution for the best rotation to relate two sets
 | |
|      of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828.
 | |
| (9)  Closed-form solution of absolute orientation using unit quaternions.
 | |
|      BKP Horn. J Opt Soc Am A. 1987. 4(4), 629-642.
 | |
| (10) Quaternions. Ken Shoemake.
 | |
|      http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf
 | |
| (11) From quaternion to matrix and back. JMP van Waveren. 2005.
 | |
|      http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm
 | |
| (12) Uniform random rotations. Ken Shoemake.
 | |
|      In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992.
 | |
| 
 | |
| 
 | |
| Examples
 | |
| --------
 | |
| 
 | |
| >>> alpha, beta, gamma = 0.123, -1.234, 2.345
 | |
| >>> origin, xaxis, yaxis, zaxis = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)
 | |
| >>> I = identity_matrix()
 | |
| >>> Rx = rotation_matrix(alpha, xaxis)
 | |
| >>> Ry = rotation_matrix(beta, yaxis)
 | |
| >>> Rz = rotation_matrix(gamma, zaxis)
 | |
| >>> R = concatenate_matrices(Rx, Ry, Rz)
 | |
| >>> euler = euler_from_matrix(R, 'rxyz')
 | |
| >>> numpy.allclose([alpha, beta, gamma], euler)
 | |
| True
 | |
| >>> Re = euler_matrix(alpha, beta, gamma, 'rxyz')
 | |
| >>> is_same_transform(R, Re)
 | |
| True
 | |
| >>> al, be, ga = euler_from_matrix(Re, 'rxyz')
 | |
| >>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz'))
 | |
| True
 | |
| >>> qx = quaternion_about_axis(alpha, xaxis)
 | |
| >>> qy = quaternion_about_axis(beta, yaxis)
 | |
| >>> qz = quaternion_about_axis(gamma, zaxis)
 | |
| >>> q = quaternion_multiply(qx, qy)
 | |
| >>> q = quaternion_multiply(q, qz)
 | |
| >>> Rq = quaternion_matrix(q)
 | |
| >>> is_same_transform(R, Rq)
 | |
| True
 | |
| >>> S = scale_matrix(1.23, origin)
 | |
| >>> T = translation_matrix((1, 2, 3))
 | |
| >>> Z = shear_matrix(beta, xaxis, origin, zaxis)
 | |
| >>> R = random_rotation_matrix(numpy.random.rand(3))
 | |
| >>> M = concatenate_matrices(T, R, Z, S)
 | |
| >>> scale, shear, angles, trans, persp = decompose_matrix(M)
 | |
| >>> numpy.allclose(scale, 1.23)
 | |
| True
 | |
| >>> numpy.allclose(trans, (1, 2, 3))
 | |
| True
 | |
| >>> numpy.allclose(shear, (0, math.tan(beta), 0))
 | |
| True
 | |
| >>> is_same_transform(R, euler_matrix(axes='sxyz', *angles))
 | |
| True
 | |
| >>> M1 = compose_matrix(scale, shear, angles, trans, persp)
 | |
| >>> is_same_transform(M, M1)
 | |
| True
 | |
| 
 | |
| """
 | |
| 
 | |
| from __future__ import division
 | |
| 
 | |
| import warnings
 | |
| import math
 | |
| 
 | |
| import numpy
 | |
| 
 | |
| # Documentation in HTML format can be generated with Epydoc
 | |
| __docformat__ = "restructuredtext en"
 | |
| 
 | |
| 
 | |
| def identity_matrix():
 | |
|     """Return 4x4 identity/unit matrix.
 | |
| 
 | |
|     >>> I = identity_matrix()
 | |
|     >>> numpy.allclose(I, numpy.dot(I, I))
 | |
|     True
 | |
|     >>> numpy.sum(I), numpy.trace(I)
 | |
|     (4.0, 4.0)
 | |
|     >>> numpy.allclose(I, numpy.identity(4, dtype=numpy.float64))
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     return numpy.identity(4, dtype=numpy.float64)
 | |
| 
 | |
| 
 | |
| def translation_matrix(direction):
 | |
|     """Return matrix to translate by direction vector.
 | |
| 
 | |
|     >>> v = numpy.random.random(3) - 0.5
 | |
|     >>> numpy.allclose(v, translation_matrix(v)[:3, 3])
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     M = numpy.identity(4)
 | |
|     M[:3, 3] = direction[:3]
 | |
|     return M
 | |
| 
 | |
| 
 | |
| def translation_from_matrix(matrix):
 | |
|     """Return translation vector from translation matrix.
 | |
| 
 | |
|     >>> v0 = numpy.random.random(3) - 0.5
 | |
|     >>> v1 = translation_from_matrix(translation_matrix(v0))
 | |
|     >>> numpy.allclose(v0, v1)
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     return numpy.array(matrix, copy=False)[:3, 3].copy()
 | |
| 
 | |
| 
 | |
| def reflection_matrix(point, normal):
 | |
|     """Return matrix to mirror at plane defined by point and normal vector.
 | |
| 
 | |
|     >>> v0 = numpy.random.random(4) - 0.5
 | |
|     >>> v0[3] = 1.0
 | |
|     >>> v1 = numpy.random.random(3) - 0.5
 | |
|     >>> R = reflection_matrix(v0, v1)
 | |
|     >>> numpy.allclose(2., numpy.trace(R))
 | |
|     True
 | |
|     >>> numpy.allclose(v0, numpy.dot(R, v0))
 | |
|     True
 | |
|     >>> v2 = v0.copy()
 | |
|     >>> v2[:3] += v1
 | |
|     >>> v3 = v0.copy()
 | |
|     >>> v2[:3] -= v1
 | |
|     >>> numpy.allclose(v2, numpy.dot(R, v3))
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     normal = unit_vector(normal[:3])
 | |
|     M = numpy.identity(4)
 | |
|     M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
 | |
|     M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
 | |
|     return M
 | |
| 
 | |
| 
 | |
| def reflection_from_matrix(matrix):
 | |
|     """Return mirror plane point and normal vector from reflection matrix.
 | |
| 
 | |
|     >>> v0 = numpy.random.random(3) - 0.5
 | |
|     >>> v1 = numpy.random.random(3) - 0.5
 | |
|     >>> M0 = reflection_matrix(v0, v1)
 | |
|     >>> point, normal = reflection_from_matrix(M0)
 | |
|     >>> M1 = reflection_matrix(point, normal)
 | |
|     >>> is_same_transform(M0, M1)
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     M = numpy.array(matrix, dtype=numpy.float64, copy=False)
 | |
|     # normal: unit eigenvector corresponding to eigenvalue -1
 | |
|     l, V = numpy.linalg.eig(M[:3, :3])
 | |
|     i = numpy.where(abs(numpy.real(l) + 1.0) < 1e-8)[0]
 | |
|     if not len(i):
 | |
|         raise ValueError("no unit eigenvector corresponding to eigenvalue -1")
 | |
|     normal = numpy.real(V[:, i[0]]).squeeze()
 | |
|     # point: any unit eigenvector corresponding to eigenvalue 1
 | |
|     l, V = numpy.linalg.eig(M)
 | |
|     i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
 | |
|     if not len(i):
 | |
|         raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
 | |
|     point = numpy.real(V[:, i[-1]]).squeeze()
 | |
|     point /= point[3]
 | |
|     return point, normal
 | |
| 
 | |
| 
 | |
| def rotation_matrix(angle, direction, point=None):
 | |
|     """Return matrix to rotate about axis defined by point and direction.
 | |
| 
 | |
|     >>> angle = (random.random() - 0.5) * (2*math.pi)
 | |
|     >>> direc = numpy.random.random(3) - 0.5
 | |
|     >>> point = numpy.random.random(3) - 0.5
 | |
|     >>> R0 = rotation_matrix(angle, direc, point)
 | |
|     >>> R1 = rotation_matrix(angle-2*math.pi, direc, point)
 | |
|     >>> is_same_transform(R0, R1)
 | |
|     True
 | |
|     >>> R0 = rotation_matrix(angle, direc, point)
 | |
|     >>> R1 = rotation_matrix(-angle, -direc, point)
 | |
|     >>> is_same_transform(R0, R1)
 | |
|     True
 | |
|     >>> I = numpy.identity(4, numpy.float64)
 | |
|     >>> numpy.allclose(I, rotation_matrix(math.pi*2, direc))
 | |
|     True
 | |
|     >>> numpy.allclose(2., numpy.trace(rotation_matrix(math.pi/2,
 | |
|     ...                                                direc, point)))
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     sina = math.sin(angle)
 | |
|     cosa = math.cos(angle)
 | |
|     direction = unit_vector(direction[:3])
 | |
|     # rotation matrix around unit vector
 | |
|     R = numpy.array(((cosa, 0.0,  0.0),
 | |
|                      (0.0,  cosa, 0.0),
 | |
|                      (0.0,  0.0,  cosa)), dtype=numpy.float64)
 | |
|     R += numpy.outer(direction, direction) * (1.0 - cosa)
 | |
|     direction *= sina
 | |
|     R += numpy.array((( 0.0,         -direction[2],  direction[1]),
 | |
|                       ( direction[2], 0.0,          -direction[0]),
 | |
|                       (-direction[1], direction[0],  0.0)),
 | |
|                      dtype=numpy.float64)
 | |
|     M = numpy.identity(4)
 | |
|     M[:3, :3] = R
 | |
|     if point is not None:
 | |
|         # rotation not around origin
 | |
|         point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
 | |
|         M[:3, 3] = point - numpy.dot(R, point)
 | |
|     return M
 | |
| 
 | |
| 
 | |
| def rotation_from_matrix(matrix):
 | |
|     """Return rotation angle and axis from rotation matrix.
 | |
| 
 | |
|     >>> angle = (random.random() - 0.5) * (2*math.pi)
 | |
|     >>> direc = numpy.random.random(3) - 0.5
 | |
|     >>> point = numpy.random.random(3) - 0.5
 | |
|     >>> R0 = rotation_matrix(angle, direc, point)
 | |
|     >>> angle, direc, point = rotation_from_matrix(R0)
 | |
|     >>> R1 = rotation_matrix(angle, direc, point)
 | |
|     >>> is_same_transform(R0, R1)
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     R = numpy.array(matrix, dtype=numpy.float64, copy=False)
 | |
|     R33 = R[:3, :3]
 | |
|     # direction: unit eigenvector of R33 corresponding to eigenvalue of 1
 | |
|     l, W = numpy.linalg.eig(R33.T)
 | |
|     i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
 | |
|     if not len(i):
 | |
|         raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
 | |
|     direction = numpy.real(W[:, i[-1]]).squeeze()
 | |
|     # point: unit eigenvector of R33 corresponding to eigenvalue of 1
 | |
|     l, Q = numpy.linalg.eig(R)
 | |
|     i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
 | |
|     if not len(i):
 | |
|         raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
 | |
|     point = numpy.real(Q[:, i[-1]]).squeeze()
 | |
|     point /= point[3]
 | |
|     # rotation angle depending on direction
 | |
|     cosa = (numpy.trace(R33) - 1.0) / 2.0
 | |
|     if abs(direction[2]) > 1e-8:
 | |
|         sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2]
 | |
|     elif abs(direction[1]) > 1e-8:
 | |
|         sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1]
 | |
|     else:
 | |
|         sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0]
 | |
|     angle = math.atan2(sina, cosa)
 | |
|     return angle, direction, point
 | |
| 
 | |
| 
 | |
| def scale_matrix(factor, origin=None, direction=None):
 | |
|     """Return matrix to scale by factor around origin in direction.
 | |
| 
 | |
|     Use factor -1 for point symmetry.
 | |
| 
 | |
|     >>> v = (numpy.random.rand(4, 5) - 0.5) * 20.0
 | |
|     >>> v[3] = 1.0
 | |
|     >>> S = scale_matrix(-1.234)
 | |
|     >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3])
 | |
|     True
 | |
|     >>> factor = random.random() * 10 - 5
 | |
|     >>> origin = numpy.random.random(3) - 0.5
 | |
|     >>> direct = numpy.random.random(3) - 0.5
 | |
|     >>> S = scale_matrix(factor, origin)
 | |
|     >>> S = scale_matrix(factor, origin, direct)
 | |
| 
 | |
|     """
 | |
|     if direction is None:
 | |
|         # uniform scaling
 | |
|         M = numpy.array(((factor, 0.0,    0.0,    0.0),
 | |
|                          (0.0,    factor, 0.0,    0.0),
 | |
|                          (0.0,    0.0,    factor, 0.0),
 | |
|                          (0.0,    0.0,    0.0,    1.0)), dtype=numpy.float64)
 | |
|         if origin is not None:
 | |
|             M[:3, 3] = origin[:3]
 | |
|             M[:3, 3] *= 1.0 - factor
 | |
|     else:
 | |
|         # nonuniform scaling
 | |
|         direction = unit_vector(direction[:3])
 | |
|         factor = 1.0 - factor
 | |
|         M = numpy.identity(4)
 | |
|         M[:3, :3] -= factor * numpy.outer(direction, direction)
 | |
|         if origin is not None:
 | |
|             M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction
 | |
|     return M
 | |
| 
 | |
| 
 | |
| def scale_from_matrix(matrix):
 | |
|     """Return scaling factor, origin and direction from scaling matrix.
 | |
| 
 | |
|     >>> factor = random.random() * 10 - 5
 | |
|     >>> origin = numpy.random.random(3) - 0.5
 | |
|     >>> direct = numpy.random.random(3) - 0.5
 | |
|     >>> S0 = scale_matrix(factor, origin)
 | |
|     >>> factor, origin, direction = scale_from_matrix(S0)
 | |
|     >>> S1 = scale_matrix(factor, origin, direction)
 | |
|     >>> is_same_transform(S0, S1)
 | |
|     True
 | |
|     >>> S0 = scale_matrix(factor, origin, direct)
 | |
|     >>> factor, origin, direction = scale_from_matrix(S0)
 | |
|     >>> S1 = scale_matrix(factor, origin, direction)
 | |
|     >>> is_same_transform(S0, S1)
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     M = numpy.array(matrix, dtype=numpy.float64, copy=False)
 | |
|     M33 = M[:3, :3]
 | |
|     factor = numpy.trace(M33) - 2.0
 | |
|     try:
 | |
|         # direction: unit eigenvector corresponding to eigenvalue factor
 | |
|         l, V = numpy.linalg.eig(M33)
 | |
|         i = numpy.where(abs(numpy.real(l) - factor) < 1e-8)[0][0]
 | |
|         direction = numpy.real(V[:, i]).squeeze()
 | |
|         direction /= vector_norm(direction)
 | |
|     except IndexError:
 | |
|         # uniform scaling
 | |
|         factor = (factor + 2.0) / 3.0
 | |
|         direction = None
 | |
|     # origin: any eigenvector corresponding to eigenvalue 1
 | |
|     l, V = numpy.linalg.eig(M)
 | |
|     i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
 | |
|     if not len(i):
 | |
|         raise ValueError("no eigenvector corresponding to eigenvalue 1")
 | |
|     origin = numpy.real(V[:, i[-1]]).squeeze()
 | |
|     origin /= origin[3]
 | |
|     return factor, origin, direction
 | |
| 
 | |
| 
 | |
| def projection_matrix(point, normal, direction=None,
 | |
|                       perspective=None, pseudo=False):
 | |
|     """Return matrix to project onto plane defined by point and normal.
 | |
| 
 | |
|     Using either perspective point, projection direction, or none of both.
 | |
| 
 | |
|     If pseudo is True, perspective projections will preserve relative depth
 | |
|     such that Perspective = dot(Orthogonal, PseudoPerspective).
 | |
| 
 | |
|     >>> P = projection_matrix((0, 0, 0), (1, 0, 0))
 | |
|     >>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:])
 | |
|     True
 | |
|     >>> point = numpy.random.random(3) - 0.5
 | |
|     >>> normal = numpy.random.random(3) - 0.5
 | |
|     >>> direct = numpy.random.random(3) - 0.5
 | |
|     >>> persp = numpy.random.random(3) - 0.5
 | |
|     >>> P0 = projection_matrix(point, normal)
 | |
|     >>> P1 = projection_matrix(point, normal, direction=direct)
 | |
|     >>> P2 = projection_matrix(point, normal, perspective=persp)
 | |
|     >>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True)
 | |
|     >>> is_same_transform(P2, numpy.dot(P0, P3))
 | |
|     True
 | |
|     >>> P = projection_matrix((3, 0, 0), (1, 1, 0), (1, 0, 0))
 | |
|     >>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20.0
 | |
|     >>> v0[3] = 1.0
 | |
|     >>> v1 = numpy.dot(P, v0)
 | |
|     >>> numpy.allclose(v1[1], v0[1])
 | |
|     True
 | |
|     >>> numpy.allclose(v1[0], 3.0-v1[1])
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     M = numpy.identity(4)
 | |
|     point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
 | |
|     normal = unit_vector(normal[:3])
 | |
|     if perspective is not None:
 | |
|         # perspective projection
 | |
|         perspective = numpy.array(perspective[:3], dtype=numpy.float64,
 | |
|                                   copy=False)
 | |
|         M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective-point, normal)
 | |
|         M[:3, :3] -= numpy.outer(perspective, normal)
 | |
|         if pseudo:
 | |
|             # preserve relative depth
 | |
|             M[:3, :3] -= numpy.outer(normal, normal)
 | |
|             M[:3, 3] = numpy.dot(point, normal) * (perspective+normal)
 | |
|         else:
 | |
|             M[:3, 3] = numpy.dot(point, normal) * perspective
 | |
|         M[3, :3] = -normal
 | |
|         M[3, 3] = numpy.dot(perspective, normal)
 | |
|     elif direction is not None:
 | |
|         # parallel projection
 | |
|         direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False)
 | |
|         scale = numpy.dot(direction, normal)
 | |
|         M[:3, :3] -= numpy.outer(direction, normal) / scale
 | |
|         M[:3, 3] = direction * (numpy.dot(point, normal) / scale)
 | |
|     else:
 | |
|         # orthogonal projection
 | |
|         M[:3, :3] -= numpy.outer(normal, normal)
 | |
|         M[:3, 3] = numpy.dot(point, normal) * normal
 | |
|     return M
 | |
| 
 | |
| 
 | |
| def projection_from_matrix(matrix, pseudo=False):
 | |
|     """Return projection plane and perspective point from projection matrix.
 | |
| 
 | |
|     Return values are same as arguments for projection_matrix function:
 | |
|     point, normal, direction, perspective, and pseudo.
 | |
| 
 | |
|     >>> point = numpy.random.random(3) - 0.5
 | |
|     >>> normal = numpy.random.random(3) - 0.5
 | |
|     >>> direct = numpy.random.random(3) - 0.5
 | |
|     >>> persp = numpy.random.random(3) - 0.5
 | |
|     >>> P0 = projection_matrix(point, normal)
 | |
|     >>> result = projection_from_matrix(P0)
 | |
|     >>> P1 = projection_matrix(*result)
 | |
|     >>> is_same_transform(P0, P1)
 | |
|     True
 | |
|     >>> P0 = projection_matrix(point, normal, direct)
 | |
|     >>> result = projection_from_matrix(P0)
 | |
|     >>> P1 = projection_matrix(*result)
 | |
|     >>> is_same_transform(P0, P1)
 | |
|     True
 | |
|     >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False)
 | |
|     >>> result = projection_from_matrix(P0, pseudo=False)
 | |
|     >>> P1 = projection_matrix(*result)
 | |
|     >>> is_same_transform(P0, P1)
 | |
|     True
 | |
|     >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True)
 | |
|     >>> result = projection_from_matrix(P0, pseudo=True)
 | |
|     >>> P1 = projection_matrix(*result)
 | |
|     >>> is_same_transform(P0, P1)
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     M = numpy.array(matrix, dtype=numpy.float64, copy=False)
 | |
|     M33 = M[:3, :3]
 | |
|     l, V = numpy.linalg.eig(M)
 | |
|     i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
 | |
|     if not pseudo and len(i):
 | |
|         # point: any eigenvector corresponding to eigenvalue 1
 | |
|         point = numpy.real(V[:, i[-1]]).squeeze()
 | |
|         point /= point[3]
 | |
|         # direction: unit eigenvector corresponding to eigenvalue 0
 | |
|         l, V = numpy.linalg.eig(M33)
 | |
|         i = numpy.where(abs(numpy.real(l)) < 1e-8)[0]
 | |
|         if not len(i):
 | |
|             raise ValueError("no eigenvector corresponding to eigenvalue 0")
 | |
|         direction = numpy.real(V[:, i[0]]).squeeze()
 | |
|         direction /= vector_norm(direction)
 | |
|         # normal: unit eigenvector of M33.T corresponding to eigenvalue 0
 | |
|         l, V = numpy.linalg.eig(M33.T)
 | |
|         i = numpy.where(abs(numpy.real(l)) < 1e-8)[0]
 | |
|         if len(i):
 | |
|             # parallel projection
 | |
|             normal = numpy.real(V[:, i[0]]).squeeze()
 | |
|             normal /= vector_norm(normal)
 | |
|             return point, normal, direction, None, False
 | |
|         else:
 | |
|             # orthogonal projection, where normal equals direction vector
 | |
|             return point, direction, None, None, False
 | |
|     else:
 | |
|         # perspective projection
 | |
|         i = numpy.where(abs(numpy.real(l)) > 1e-8)[0]
 | |
|         if not len(i):
 | |
|             raise ValueError(
 | |
|                 "no eigenvector not corresponding to eigenvalue 0")
 | |
|         point = numpy.real(V[:, i[-1]]).squeeze()
 | |
|         point /= point[3]
 | |
|         normal = - M[3, :3]
 | |
|         perspective = M[:3, 3] / numpy.dot(point[:3], normal)
 | |
|         if pseudo:
 | |
|             perspective -= normal
 | |
|         return point, normal, None, perspective, pseudo
 | |
| 
 | |
| 
 | |
| def clip_matrix(left, right, bottom, top, near, far, perspective=False):
 | |
|     """Return matrix to obtain normalized device coordinates from frustrum.
 | |
| 
 | |
|     The frustrum bounds are axis-aligned along x (left, right),
 | |
|     y (bottom, top) and z (near, far).
 | |
| 
 | |
|     Normalized device coordinates are in range [-1, 1] if coordinates are
 | |
|     inside the frustrum.
 | |
| 
 | |
|     If perspective is True the frustrum is a truncated pyramid with the
 | |
|     perspective point at origin and direction along z axis, otherwise an
 | |
|     orthographic canonical view volume (a box).
 | |
| 
 | |
|     Homogeneous coordinates transformed by the perspective clip matrix
 | |
|     need to be dehomogenized (devided by w coordinate).
 | |
| 
 | |
|     >>> frustrum = numpy.random.rand(6)
 | |
|     >>> frustrum[1] += frustrum[0]
 | |
|     >>> frustrum[3] += frustrum[2]
 | |
|     >>> frustrum[5] += frustrum[4]
 | |
|     >>> M = clip_matrix(*frustrum, perspective=False)
 | |
|     >>> numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0])
 | |
|     array([-1., -1., -1.,  1.])
 | |
|     >>> numpy.dot(M, [frustrum[1], frustrum[3], frustrum[5], 1.0])
 | |
|     array([ 1.,  1.,  1.,  1.])
 | |
|     >>> M = clip_matrix(*frustrum, perspective=True)
 | |
|     >>> v = numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0])
 | |
|     >>> v / v[3]
 | |
|     array([-1., -1., -1.,  1.])
 | |
|     >>> v = numpy.dot(M, [frustrum[1], frustrum[3], frustrum[4], 1.0])
 | |
|     >>> v / v[3]
 | |
|     array([ 1.,  1., -1.,  1.])
 | |
| 
 | |
|     """
 | |
|     if left >= right or bottom >= top or near >= far:
 | |
|         raise ValueError("invalid frustrum")
 | |
|     if perspective:
 | |
|         if near <= _EPS:
 | |
|             raise ValueError("invalid frustrum: near <= 0")
 | |
|         t = 2.0 * near
 | |
|         M = ((-t/(right-left), 0.0, (right+left)/(right-left), 0.0),
 | |
|              (0.0, -t/(top-bottom), (top+bottom)/(top-bottom), 0.0),
 | |
|              (0.0, 0.0, -(far+near)/(far-near), t*far/(far-near)),
 | |
|              (0.0, 0.0, -1.0, 0.0))
 | |
|     else:
 | |
|         M = ((2.0/(right-left), 0.0, 0.0, (right+left)/(left-right)),
 | |
|              (0.0, 2.0/(top-bottom), 0.0, (top+bottom)/(bottom-top)),
 | |
|              (0.0, 0.0, 2.0/(far-near), (far+near)/(near-far)),
 | |
|              (0.0, 0.0, 0.0, 1.0))
 | |
|     return numpy.array(M, dtype=numpy.float64)
 | |
| 
 | |
| 
 | |
| def shear_matrix(angle, direction, point, normal):
 | |
|     """Return matrix to shear by angle along direction vector on shear plane.
 | |
| 
 | |
|     The shear plane is defined by a point and normal vector. The direction
 | |
|     vector must be orthogonal to the plane's normal vector.
 | |
| 
 | |
|     A point P is transformed by the shear matrix into P" such that
 | |
|     the vector P-P" is parallel to the direction vector and its extent is
 | |
|     given by the angle of P-P'-P", where P' is the orthogonal projection
 | |
|     of P onto the shear plane.
 | |
| 
 | |
|     >>> angle = (random.random() - 0.5) * 4*math.pi
 | |
|     >>> direct = numpy.random.random(3) - 0.5
 | |
|     >>> point = numpy.random.random(3) - 0.5
 | |
|     >>> normal = numpy.cross(direct, numpy.random.random(3))
 | |
|     >>> S = shear_matrix(angle, direct, point, normal)
 | |
|     >>> numpy.allclose(1.0, numpy.linalg.det(S))
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     normal = unit_vector(normal[:3])
 | |
|     direction = unit_vector(direction[:3])
 | |
|     if abs(numpy.dot(normal, direction)) > 1e-6:
 | |
|         raise ValueError("direction and normal vectors are not orthogonal")
 | |
|     angle = math.tan(angle)
 | |
|     M = numpy.identity(4)
 | |
|     M[:3, :3] += angle * numpy.outer(direction, normal)
 | |
|     M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction
 | |
|     return M
 | |
| 
 | |
| 
 | |
| def shear_from_matrix(matrix):
 | |
|     """Return shear angle, direction and plane from shear matrix.
 | |
| 
 | |
|     >>> angle = (random.random() - 0.5) * 4*math.pi
 | |
|     >>> direct = numpy.random.random(3) - 0.5
 | |
|     >>> point = numpy.random.random(3) - 0.5
 | |
|     >>> normal = numpy.cross(direct, numpy.random.random(3))
 | |
|     >>> S0 = shear_matrix(angle, direct, point, normal)
 | |
|     >>> angle, direct, point, normal = shear_from_matrix(S0)
 | |
|     >>> S1 = shear_matrix(angle, direct, point, normal)
 | |
|     >>> is_same_transform(S0, S1)
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     M = numpy.array(matrix, dtype=numpy.float64, copy=False)
 | |
|     M33 = M[:3, :3]
 | |
|     # normal: cross independent eigenvectors corresponding to the eigenvalue 1
 | |
|     l, V = numpy.linalg.eig(M33)
 | |
|     i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-4)[0]
 | |
|     if len(i) < 2:
 | |
|         raise ValueError("No two linear independent eigenvectors found %s" % l)
 | |
|     V = numpy.real(V[:, i]).squeeze().T
 | |
|     lenorm = -1.0
 | |
|     for i0, i1 in ((0, 1), (0, 2), (1, 2)):
 | |
|         n = numpy.cross(V[i0], V[i1])
 | |
|         l = vector_norm(n)
 | |
|         if l > lenorm:
 | |
|             lenorm = l
 | |
|             normal = n
 | |
|     normal /= lenorm
 | |
|     # direction and angle
 | |
|     direction = numpy.dot(M33 - numpy.identity(3), normal)
 | |
|     angle = vector_norm(direction)
 | |
|     direction /= angle
 | |
|     angle = math.atan(angle)
 | |
|     # point: eigenvector corresponding to eigenvalue 1
 | |
|     l, V = numpy.linalg.eig(M)
 | |
|     i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
 | |
|     if not len(i):
 | |
|         raise ValueError("no eigenvector corresponding to eigenvalue 1")
 | |
|     point = numpy.real(V[:, i[-1]]).squeeze()
 | |
|     point /= point[3]
 | |
|     return angle, direction, point, normal
 | |
| 
 | |
| 
 | |
| def decompose_matrix(matrix):
 | |
|     """Return sequence of transformations from transformation matrix.
 | |
| 
 | |
|     matrix : array_like
 | |
|         Non-degenerative homogeneous transformation matrix
 | |
| 
 | |
|     Return tuple of:
 | |
|         scale : vector of 3 scaling factors
 | |
|         shear : list of shear factors for x-y, x-z, y-z axes
 | |
|         angles : list of Euler angles about static x, y, z axes
 | |
|         translate : translation vector along x, y, z axes
 | |
|         perspective : perspective partition of matrix
 | |
| 
 | |
|     Raise ValueError if matrix is of wrong type or degenerative.
 | |
| 
 | |
|     >>> T0 = translation_matrix((1, 2, 3))
 | |
|     >>> scale, shear, angles, trans, persp = decompose_matrix(T0)
 | |
|     >>> T1 = translation_matrix(trans)
 | |
|     >>> numpy.allclose(T0, T1)
 | |
|     True
 | |
|     >>> S = scale_matrix(0.123)
 | |
|     >>> scale, shear, angles, trans, persp = decompose_matrix(S)
 | |
|     >>> scale[0]
 | |
|     0.123
 | |
|     >>> R0 = euler_matrix(1, 2, 3)
 | |
|     >>> scale, shear, angles, trans, persp = decompose_matrix(R0)
 | |
|     >>> R1 = euler_matrix(*angles)
 | |
|     >>> numpy.allclose(R0, R1)
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     M = numpy.array(matrix, dtype=numpy.float64, copy=True).T
 | |
|     if abs(M[3, 3]) < _EPS:
 | |
|         raise ValueError("M[3, 3] is zero")
 | |
|     M /= M[3, 3]
 | |
|     P = M.copy()
 | |
|     P[:, 3] = 0, 0, 0, 1
 | |
|     if not numpy.linalg.det(P):
 | |
|         raise ValueError("Matrix is singular")
 | |
| 
 | |
|     scale = numpy.zeros((3, ), dtype=numpy.float64)
 | |
|     shear = [0, 0, 0]
 | |
|     angles = [0, 0, 0]
 | |
| 
 | |
|     if any(abs(M[:3, 3]) > _EPS):
 | |
|         perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T))
 | |
|         M[:, 3] = 0, 0, 0, 1
 | |
|     else:
 | |
|         perspective = numpy.array((0, 0, 0, 1), dtype=numpy.float64)
 | |
| 
 | |
|     translate = M[3, :3].copy()
 | |
|     M[3, :3] = 0
 | |
| 
 | |
|     row = M[:3, :3].copy()
 | |
|     scale[0] = vector_norm(row[0])
 | |
|     row[0] /= scale[0]
 | |
|     shear[0] = numpy.dot(row[0], row[1])
 | |
|     row[1] -= row[0] * shear[0]
 | |
|     scale[1] = vector_norm(row[1])
 | |
|     row[1] /= scale[1]
 | |
|     shear[0] /= scale[1]
 | |
|     shear[1] = numpy.dot(row[0], row[2])
 | |
|     row[2] -= row[0] * shear[1]
 | |
|     shear[2] = numpy.dot(row[1], row[2])
 | |
|     row[2] -= row[1] * shear[2]
 | |
|     scale[2] = vector_norm(row[2])
 | |
|     row[2] /= scale[2]
 | |
|     shear[1:] /= scale[2]
 | |
| 
 | |
|     if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0:
 | |
|         scale *= -1
 | |
|         row *= -1
 | |
| 
 | |
|     angles[1] = math.asin(-row[0, 2])
 | |
|     if math.cos(angles[1]):
 | |
|         angles[0] = math.atan2(row[1, 2], row[2, 2])
 | |
|         angles[2] = math.atan2(row[0, 1], row[0, 0])
 | |
|     else:
 | |
|         #angles[0] = math.atan2(row[1, 0], row[1, 1])
 | |
|         angles[0] = math.atan2(-row[2, 1], row[1, 1])
 | |
|         angles[2] = 0.0
 | |
| 
 | |
|     return scale, shear, angles, translate, perspective
 | |
| 
 | |
| 
 | |
| def compose_matrix(scale=None, shear=None, angles=None, translate=None,
 | |
|                    perspective=None):
 | |
|     """Return transformation matrix from sequence of transformations.
 | |
| 
 | |
|     This is the inverse of the decompose_matrix function.
 | |
| 
 | |
|     Sequence of transformations:
 | |
|         scale : vector of 3 scaling factors
 | |
|         shear : list of shear factors for x-y, x-z, y-z axes
 | |
|         angles : list of Euler angles about static x, y, z axes
 | |
|         translate : translation vector along x, y, z axes
 | |
|         perspective : perspective partition of matrix
 | |
| 
 | |
|     >>> scale = numpy.random.random(3) - 0.5
 | |
|     >>> shear = numpy.random.random(3) - 0.5
 | |
|     >>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi)
 | |
|     >>> trans = numpy.random.random(3) - 0.5
 | |
|     >>> persp = numpy.random.random(4) - 0.5
 | |
|     >>> M0 = compose_matrix(scale, shear, angles, trans, persp)
 | |
|     >>> result = decompose_matrix(M0)
 | |
|     >>> M1 = compose_matrix(*result)
 | |
|     >>> is_same_transform(M0, M1)
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     M = numpy.identity(4)
 | |
|     if perspective is not None:
 | |
|         P = numpy.identity(4)
 | |
|         P[3, :] = perspective[:4]
 | |
|         M = numpy.dot(M, P)
 | |
|     if translate is not None:
 | |
|         T = numpy.identity(4)
 | |
|         T[:3, 3] = translate[:3]
 | |
|         M = numpy.dot(M, T)
 | |
|     if angles is not None:
 | |
|         R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz')
 | |
|         M = numpy.dot(M, R)
 | |
|     if shear is not None:
 | |
|         Z = numpy.identity(4)
 | |
|         Z[1, 2] = shear[2]
 | |
|         Z[0, 2] = shear[1]
 | |
|         Z[0, 1] = shear[0]
 | |
|         M = numpy.dot(M, Z)
 | |
|     if scale is not None:
 | |
|         S = numpy.identity(4)
 | |
|         S[0, 0] = scale[0]
 | |
|         S[1, 1] = scale[1]
 | |
|         S[2, 2] = scale[2]
 | |
|         M = numpy.dot(M, S)
 | |
|     M /= M[3, 3]
 | |
|     return M
 | |
| 
 | |
| 
 | |
| def orthogonalization_matrix(lengths, angles):
 | |
|     """Return orthogonalization matrix for crystallographic cell coordinates.
 | |
| 
 | |
|     Angles are expected in degrees.
 | |
| 
 | |
|     The de-orthogonalization matrix is the inverse.
 | |
| 
 | |
|     >>> O = orthogonalization_matrix((10., 10., 10.), (90., 90., 90.))
 | |
|     >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
 | |
|     True
 | |
|     >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
 | |
|     >>> numpy.allclose(numpy.sum(O), 43.063229)
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     a, b, c = lengths
 | |
|     angles = numpy.radians(angles)
 | |
|     sina, sinb, _ = numpy.sin(angles)
 | |
|     cosa, cosb, cosg = numpy.cos(angles)
 | |
|     co = (cosa * cosb - cosg) / (sina * sinb)
 | |
|     return numpy.array((
 | |
|         ( a*sinb*math.sqrt(1.0-co*co),  0.0,    0.0, 0.0),
 | |
|         (-a*sinb*co,                    b*sina, 0.0, 0.0),
 | |
|         ( a*cosb,                       b*cosa, c,   0.0),
 | |
|         ( 0.0,                          0.0,    0.0, 1.0)),
 | |
|         dtype=numpy.float64)
 | |
| 
 | |
| 
 | |
| def superimposition_matrix(v0, v1, scaling=False, usesvd=True):
 | |
|     """Return matrix to transform given vector set into second vector set.
 | |
| 
 | |
|     v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 vectors.
 | |
| 
 | |
|     If usesvd is True, the weighted sum of squared deviations (RMSD) is
 | |
|     minimized according to the algorithm by W. Kabsch [8]. Otherwise the
 | |
|     quaternion based algorithm by B. Horn [9] is used (slower when using
 | |
|     this Python implementation).
 | |
| 
 | |
|     The returned matrix performs rotation, translation and uniform scaling
 | |
|     (if specified).
 | |
| 
 | |
|     >>> v0 = numpy.random.rand(3, 10)
 | |
|     >>> M = superimposition_matrix(v0, v0)
 | |
|     >>> numpy.allclose(M, numpy.identity(4))
 | |
|     True
 | |
|     >>> R = random_rotation_matrix(numpy.random.random(3))
 | |
|     >>> v0 = ((1,0,0), (0,1,0), (0,0,1), (1,1,1))
 | |
|     >>> v1 = numpy.dot(R, v0)
 | |
|     >>> M = superimposition_matrix(v0, v1)
 | |
|     >>> numpy.allclose(v1, numpy.dot(M, v0))
 | |
|     True
 | |
|     >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20.0
 | |
|     >>> v0[3] = 1.0
 | |
|     >>> v1 = numpy.dot(R, v0)
 | |
|     >>> M = superimposition_matrix(v0, v1)
 | |
|     >>> numpy.allclose(v1, numpy.dot(M, v0))
 | |
|     True
 | |
|     >>> S = scale_matrix(random.random())
 | |
|     >>> T = translation_matrix(numpy.random.random(3)-0.5)
 | |
|     >>> M = concatenate_matrices(T, R, S)
 | |
|     >>> v1 = numpy.dot(M, v0)
 | |
|     >>> v0[:3] += numpy.random.normal(0.0, 1e-9, 300).reshape(3, -1)
 | |
|     >>> M = superimposition_matrix(v0, v1, scaling=True)
 | |
|     >>> numpy.allclose(v1, numpy.dot(M, v0))
 | |
|     True
 | |
|     >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False)
 | |
|     >>> numpy.allclose(v1, numpy.dot(M, v0))
 | |
|     True
 | |
|     >>> v = numpy.empty((4, 100, 3), dtype=numpy.float64)
 | |
|     >>> v[:, :, 0] = v0
 | |
|     >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False)
 | |
|     >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0]))
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3]
 | |
|     v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3]
 | |
| 
 | |
|     if v0.shape != v1.shape or v0.shape[1] < 3:
 | |
|         raise ValueError("Vector sets are of wrong shape or type.")
 | |
| 
 | |
|     # move centroids to origin
 | |
|     t0 = numpy.mean(v0, axis=1)
 | |
|     t1 = numpy.mean(v1, axis=1)
 | |
|     v0 = v0 - t0.reshape(3, 1)
 | |
|     v1 = v1 - t1.reshape(3, 1)
 | |
| 
 | |
|     if usesvd:
 | |
|         # Singular Value Decomposition of covariance matrix
 | |
|         u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T))
 | |
|         # rotation matrix from SVD orthonormal bases
 | |
|         R = numpy.dot(u, vh)
 | |
|         if numpy.linalg.det(R) < 0.0:
 | |
|             # R does not constitute right handed system
 | |
|             R -= numpy.outer(u[:, 2], vh[2, :]*2.0)
 | |
|             s[-1] *= -1.0
 | |
|         # homogeneous transformation matrix
 | |
|         M = numpy.identity(4)
 | |
|         M[:3, :3] = R
 | |
|     else:
 | |
|         # compute symmetric matrix N
 | |
|         xx, yy, zz = numpy.sum(v0 * v1, axis=1)
 | |
|         xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1)
 | |
|         xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1)
 | |
|         N = ((xx+yy+zz, yz-zy,    zx-xz,    xy-yx),
 | |
|              (yz-zy,    xx-yy-zz, xy+yx,    zx+xz),
 | |
|              (zx-xz,    xy+yx,   -xx+yy-zz, yz+zy),
 | |
|              (xy-yx,    zx+xz,    yz+zy,   -xx-yy+zz))
 | |
|         # quaternion: eigenvector corresponding to most positive eigenvalue
 | |
|         l, V = numpy.linalg.eig(N)
 | |
|         q = V[:, numpy.argmax(l)]
 | |
|         q /= vector_norm(q) # unit quaternion
 | |
|         q = numpy.roll(q, -1) # move w component to end
 | |
|         # homogeneous transformation matrix
 | |
|         M = quaternion_matrix(q)
 | |
| 
 | |
|     # scale: ratio of rms deviations from centroid
 | |
|     if scaling:
 | |
|         v0 *= v0
 | |
|         v1 *= v1
 | |
|         M[:3, :3] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0))
 | |
| 
 | |
|     # translation
 | |
|     M[:3, 3] = t1
 | |
|     T = numpy.identity(4)
 | |
|     T[:3, 3] = -t0
 | |
|     M = numpy.dot(M, T)
 | |
|     return M
 | |
| 
 | |
| 
 | |
| def euler_matrix(ai, aj, ak, axes='sxyz'):
 | |
|     """Return homogeneous rotation matrix from Euler angles and axis sequence.
 | |
| 
 | |
|     ai, aj, ak : Euler's roll, pitch and yaw angles
 | |
|     axes : One of 24 axis sequences as string or encoded tuple
 | |
| 
 | |
|     >>> R = euler_matrix(1, 2, 3, 'syxz')
 | |
|     >>> numpy.allclose(numpy.sum(R[0]), -1.34786452)
 | |
|     True
 | |
|     >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1))
 | |
|     >>> numpy.allclose(numpy.sum(R[0]), -0.383436184)
 | |
|     True
 | |
|     >>> ai, aj, ak = (4.0*math.pi) * (numpy.random.random(3) - 0.5)
 | |
|     >>> for axes in _AXES2TUPLE.keys():
 | |
|     ...    R = euler_matrix(ai, aj, ak, axes)
 | |
|     >>> for axes in _TUPLE2AXES.keys():
 | |
|     ...    R = euler_matrix(ai, aj, ak, axes)
 | |
| 
 | |
|     """
 | |
|     try:
 | |
|         firstaxis, parity, repetition, frame = _AXES2TUPLE[axes]
 | |
|     except (AttributeError, KeyError):
 | |
|         _ = _TUPLE2AXES[axes]
 | |
|         firstaxis, parity, repetition, frame = axes
 | |
| 
 | |
|     i = firstaxis
 | |
|     j = _NEXT_AXIS[i+parity]
 | |
|     k = _NEXT_AXIS[i-parity+1]
 | |
| 
 | |
|     if frame:
 | |
|         ai, ak = ak, ai
 | |
|     if parity:
 | |
|         ai, aj, ak = -ai, -aj, -ak
 | |
| 
 | |
|     si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak)
 | |
|     ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak)
 | |
|     cc, cs = ci*ck, ci*sk
 | |
|     sc, ss = si*ck, si*sk
 | |
| 
 | |
|     M = numpy.identity(4)
 | |
|     if repetition:
 | |
|         M[i, i] = cj
 | |
|         M[i, j] = sj*si
 | |
|         M[i, k] = sj*ci
 | |
|         M[j, i] = sj*sk
 | |
|         M[j, j] = -cj*ss+cc
 | |
|         M[j, k] = -cj*cs-sc
 | |
|         M[k, i] = -sj*ck
 | |
|         M[k, j] = cj*sc+cs
 | |
|         M[k, k] = cj*cc-ss
 | |
|     else:
 | |
|         M[i, i] = cj*ck
 | |
|         M[i, j] = sj*sc-cs
 | |
|         M[i, k] = sj*cc+ss
 | |
|         M[j, i] = cj*sk
 | |
|         M[j, j] = sj*ss+cc
 | |
|         M[j, k] = sj*cs-sc
 | |
|         M[k, i] = -sj
 | |
|         M[k, j] = cj*si
 | |
|         M[k, k] = cj*ci
 | |
|     return M
 | |
| 
 | |
| 
 | |
| def euler_from_matrix(matrix, axes='sxyz'):
 | |
|     """Return Euler angles from rotation matrix for specified axis sequence.
 | |
| 
 | |
|     axes : One of 24 axis sequences as string or encoded tuple
 | |
| 
 | |
|     Note that many Euler angle triplets can describe one matrix.
 | |
| 
 | |
|     >>> R0 = euler_matrix(1, 2, 3, 'syxz')
 | |
|     >>> al, be, ga = euler_from_matrix(R0, 'syxz')
 | |
|     >>> R1 = euler_matrix(al, be, ga, 'syxz')
 | |
|     >>> numpy.allclose(R0, R1)
 | |
|     True
 | |
|     >>> angles = (4.0*math.pi) * (numpy.random.random(3) - 0.5)
 | |
|     >>> for axes in _AXES2TUPLE.keys():
 | |
|     ...    R0 = euler_matrix(axes=axes, *angles)
 | |
|     ...    R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes))
 | |
|     ...    if not numpy.allclose(R0, R1): print axes, "failed"
 | |
| 
 | |
|     """
 | |
|     try:
 | |
|         firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
 | |
|     except (AttributeError, KeyError):
 | |
|         _ = _TUPLE2AXES[axes]
 | |
|         firstaxis, parity, repetition, frame = axes
 | |
| 
 | |
|     i = firstaxis
 | |
|     j = _NEXT_AXIS[i+parity]
 | |
|     k = _NEXT_AXIS[i-parity+1]
 | |
| 
 | |
|     M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3]
 | |
|     if repetition:
 | |
|         sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k])
 | |
|         if sy > _EPS:
 | |
|             ax = math.atan2( M[i, j],  M[i, k])
 | |
|             ay = math.atan2( sy,       M[i, i])
 | |
|             az = math.atan2( M[j, i], -M[k, i])
 | |
|         else:
 | |
|             ax = math.atan2(-M[j, k],  M[j, j])
 | |
|             ay = math.atan2( sy,       M[i, i])
 | |
|             az = 0.0
 | |
|     else:
 | |
|         cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i])
 | |
|         if cy > _EPS:
 | |
|             ax = math.atan2( M[k, j],  M[k, k])
 | |
|             ay = math.atan2(-M[k, i],  cy)
 | |
|             az = math.atan2( M[j, i],  M[i, i])
 | |
|         else:
 | |
|             ax = math.atan2(-M[j, k],  M[j, j])
 | |
|             ay = math.atan2(-M[k, i],  cy)
 | |
|             az = 0.0
 | |
| 
 | |
|     if parity:
 | |
|         ax, ay, az = -ax, -ay, -az
 | |
|     if frame:
 | |
|         ax, az = az, ax
 | |
|     return ax, ay, az
 | |
| 
 | |
| 
 | |
| def euler_from_quaternion(quaternion, axes='sxyz'):
 | |
|     """Return Euler angles from quaternion for specified axis sequence.
 | |
| 
 | |
|     >>> angles = euler_from_quaternion([0.06146124, 0, 0, 0.99810947])
 | |
|     >>> numpy.allclose(angles, [0.123, 0, 0])
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     return euler_from_matrix(quaternion_matrix(quaternion), axes)
 | |
| 
 | |
| 
 | |
| def quaternion_from_euler(ai, aj, ak, axes='sxyz'):
 | |
|     """Return quaternion from Euler angles and axis sequence.
 | |
| 
 | |
|     ai, aj, ak : Euler's roll, pitch and yaw angles
 | |
|     axes : One of 24 axis sequences as string or encoded tuple
 | |
| 
 | |
|     >>> q = quaternion_from_euler(1, 2, 3, 'ryxz')
 | |
|     >>> numpy.allclose(q, [0.310622, -0.718287, 0.444435, 0.435953])
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     try:
 | |
|         firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
 | |
|     except (AttributeError, KeyError):
 | |
|         _ = _TUPLE2AXES[axes]
 | |
|         firstaxis, parity, repetition, frame = axes
 | |
| 
 | |
|     i = firstaxis
 | |
|     j = _NEXT_AXIS[i+parity]
 | |
|     k = _NEXT_AXIS[i-parity+1]
 | |
| 
 | |
|     if frame:
 | |
|         ai, ak = ak, ai
 | |
|     if parity:
 | |
|         aj = -aj
 | |
| 
 | |
|     ai /= 2.0
 | |
|     aj /= 2.0
 | |
|     ak /= 2.0
 | |
|     ci = math.cos(ai)
 | |
|     si = math.sin(ai)
 | |
|     cj = math.cos(aj)
 | |
|     sj = math.sin(aj)
 | |
|     ck = math.cos(ak)
 | |
|     sk = math.sin(ak)
 | |
|     cc = ci*ck
 | |
|     cs = ci*sk
 | |
|     sc = si*ck
 | |
|     ss = si*sk
 | |
| 
 | |
|     quaternion = numpy.empty((4, ), dtype=numpy.float64)
 | |
|     if repetition:
 | |
|         quaternion[i] = cj*(cs + sc)
 | |
|         quaternion[j] = sj*(cc + ss)
 | |
|         quaternion[k] = sj*(cs - sc)
 | |
|         quaternion[3] = cj*(cc - ss)
 | |
|     else:
 | |
|         quaternion[i] = cj*sc - sj*cs
 | |
|         quaternion[j] = cj*ss + sj*cc
 | |
|         quaternion[k] = cj*cs - sj*sc
 | |
|         quaternion[3] = cj*cc + sj*ss
 | |
|     if parity:
 | |
|         quaternion[j] *= -1
 | |
| 
 | |
|     return quaternion
 | |
| 
 | |
| 
 | |
| def quaternion_about_axis(angle, axis):
 | |
|     """Return quaternion for rotation about axis.
 | |
| 
 | |
|     >>> q = quaternion_about_axis(0.123, (1, 0, 0))
 | |
|     >>> numpy.allclose(q, [0.06146124, 0, 0, 0.99810947])
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     quaternion = numpy.zeros((4, ), dtype=numpy.float64)
 | |
|     quaternion[:3] = axis[:3]
 | |
|     qlen = vector_norm(quaternion)
 | |
|     if qlen > _EPS:
 | |
|         quaternion *= math.sin(angle/2.0) / qlen
 | |
|     quaternion[3] = math.cos(angle/2.0)
 | |
|     return quaternion
 | |
| 
 | |
| 
 | |
| def quaternion_matrix(quaternion):
 | |
|     """Return homogeneous rotation matrix from quaternion.
 | |
| 
 | |
|     >>> R = quaternion_matrix([0.06146124, 0, 0, 0.99810947])
 | |
|     >>> numpy.allclose(R, rotation_matrix(0.123, (1, 0, 0)))
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     q = numpy.array(quaternion[:4], dtype=numpy.float64, copy=True)
 | |
|     nq = numpy.dot(q, q)
 | |
|     if nq < _EPS:
 | |
|         return numpy.identity(4)
 | |
|     q *= math.sqrt(2.0 / nq)
 | |
|     q = numpy.outer(q, q)
 | |
|     return numpy.array((
 | |
|         (1.0-q[1, 1]-q[2, 2],     q[0, 1]-q[2, 3],     q[0, 2]+q[1, 3], 0.0),
 | |
|         (    q[0, 1]+q[2, 3], 1.0-q[0, 0]-q[2, 2],     q[1, 2]-q[0, 3], 0.0),
 | |
|         (    q[0, 2]-q[1, 3],     q[1, 2]+q[0, 3], 1.0-q[0, 0]-q[1, 1], 0.0),
 | |
|         (                0.0,                 0.0,                 0.0, 1.0)
 | |
|         ), dtype=numpy.float64)
 | |
| 
 | |
| 
 | |
| def quaternion_from_matrix(matrix):
 | |
|     """Return quaternion from rotation matrix.
 | |
| 
 | |
|     >>> R = rotation_matrix(0.123, (1, 2, 3))
 | |
|     >>> q = quaternion_from_matrix(R)
 | |
|     >>> numpy.allclose(q, [0.0164262, 0.0328524, 0.0492786, 0.9981095])
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     q = numpy.empty((4, ), dtype=numpy.float64)
 | |
|     M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4]
 | |
|     t = numpy.trace(M)
 | |
|     if t > M[3, 3]:
 | |
|         q[3] = t
 | |
|         q[2] = M[1, 0] - M[0, 1]
 | |
|         q[1] = M[0, 2] - M[2, 0]
 | |
|         q[0] = M[2, 1] - M[1, 2]
 | |
|     else:
 | |
|         i, j, k = 0, 1, 2
 | |
|         if M[1, 1] > M[0, 0]:
 | |
|             i, j, k = 1, 2, 0
 | |
|         if M[2, 2] > M[i, i]:
 | |
|             i, j, k = 2, 0, 1
 | |
|         t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
 | |
|         q[i] = t
 | |
|         q[j] = M[i, j] + M[j, i]
 | |
|         q[k] = M[k, i] + M[i, k]
 | |
|         q[3] = M[k, j] - M[j, k]
 | |
|     q *= 0.5 / math.sqrt(t * M[3, 3])
 | |
|     return q
 | |
| 
 | |
| 
 | |
| def quaternion_multiply(quaternion1, quaternion0):
 | |
|     """Return multiplication of two quaternions.
 | |
| 
 | |
|     >>> q = quaternion_multiply([1, -2, 3, 4], [-5, 6, 7, 8])
 | |
|     >>> numpy.allclose(q, [-44, -14, 48, 28])
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     x0, y0, z0, w0 = quaternion0
 | |
|     x1, y1, z1, w1 = quaternion1
 | |
|     return numpy.array((
 | |
|          x1*w0 + y1*z0 - z1*y0 + w1*x0,
 | |
|         -x1*z0 + y1*w0 + z1*x0 + w1*y0,
 | |
|          x1*y0 - y1*x0 + z1*w0 + w1*z0,
 | |
|         -x1*x0 - y1*y0 - z1*z0 + w1*w0), dtype=numpy.float64)
 | |
| 
 | |
| 
 | |
| def quaternion_conjugate(quaternion):
 | |
|     """Return conjugate of quaternion.
 | |
| 
 | |
|     >>> q0 = random_quaternion()
 | |
|     >>> q1 = quaternion_conjugate(q0)
 | |
|     >>> q1[3] == q0[3] and all(q1[:3] == -q0[:3])
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     return numpy.array((-quaternion[0], -quaternion[1],
 | |
|                         -quaternion[2], quaternion[3]), dtype=numpy.float64)
 | |
| 
 | |
| 
 | |
| def quaternion_inverse(quaternion):
 | |
|     """Return inverse of quaternion.
 | |
| 
 | |
|     >>> q0 = random_quaternion()
 | |
|     >>> q1 = quaternion_inverse(q0)
 | |
|     >>> numpy.allclose(quaternion_multiply(q0, q1), [0, 0, 0, 1])
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     return quaternion_conjugate(quaternion) / numpy.dot(quaternion, quaternion)
 | |
| 
 | |
| 
 | |
| def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True):
 | |
|     """Return spherical linear interpolation between two quaternions.
 | |
| 
 | |
|     >>> q0 = random_quaternion()
 | |
|     >>> q1 = random_quaternion()
 | |
|     >>> q = quaternion_slerp(q0, q1, 0.0)
 | |
|     >>> numpy.allclose(q, q0)
 | |
|     True
 | |
|     >>> q = quaternion_slerp(q0, q1, 1.0, 1)
 | |
|     >>> numpy.allclose(q, q1)
 | |
|     True
 | |
|     >>> q = quaternion_slerp(q0, q1, 0.5)
 | |
|     >>> angle = math.acos(numpy.dot(q0, q))
 | |
|     >>> numpy.allclose(2.0, math.acos(numpy.dot(q0, q1)) / angle) or \
 | |
|         numpy.allclose(2.0, math.acos(-numpy.dot(q0, q1)) / angle)
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     q0 = unit_vector(quat0[:4])
 | |
|     q1 = unit_vector(quat1[:4])
 | |
|     if fraction == 0.0:
 | |
|         return q0
 | |
|     elif fraction == 1.0:
 | |
|         return q1
 | |
|     d = numpy.dot(q0, q1)
 | |
|     if abs(abs(d) - 1.0) < _EPS:
 | |
|         return q0
 | |
|     if shortestpath and d < 0.0:
 | |
|         # invert rotation
 | |
|         d = -d
 | |
|         q1 *= -1.0
 | |
|     angle = math.acos(d) + spin * math.pi
 | |
|     if abs(angle) < _EPS:
 | |
|         return q0
 | |
|     isin = 1.0 / math.sin(angle)
 | |
|     q0 *= math.sin((1.0 - fraction) * angle) * isin
 | |
|     q1 *= math.sin(fraction * angle) * isin
 | |
|     q0 += q1
 | |
|     return q0
 | |
| 
 | |
| 
 | |
| def random_quaternion(rand=None):
 | |
|     """Return uniform random unit quaternion.
 | |
| 
 | |
|     rand: array like or None
 | |
|         Three independent random variables that are uniformly distributed
 | |
|         between 0 and 1.
 | |
| 
 | |
|     >>> q = random_quaternion()
 | |
|     >>> numpy.allclose(1.0, vector_norm(q))
 | |
|     True
 | |
|     >>> q = random_quaternion(numpy.random.random(3))
 | |
|     >>> q.shape
 | |
|     (4,)
 | |
| 
 | |
|     """
 | |
|     if rand is None:
 | |
|         rand = numpy.random.rand(3)
 | |
|     else:
 | |
|         assert len(rand) == 3
 | |
|     r1 = numpy.sqrt(1.0 - rand[0])
 | |
|     r2 = numpy.sqrt(rand[0])
 | |
|     pi2 = math.pi * 2.0
 | |
|     t1 = pi2 * rand[1]
 | |
|     t2 = pi2 * rand[2]
 | |
|     return numpy.array((numpy.sin(t1)*r1,
 | |
|                         numpy.cos(t1)*r1,
 | |
|                         numpy.sin(t2)*r2,
 | |
|                         numpy.cos(t2)*r2), dtype=numpy.float64)
 | |
| 
 | |
| 
 | |
| def random_rotation_matrix(rand=None):
 | |
|     """Return uniform random rotation matrix.
 | |
| 
 | |
|     rnd: array like
 | |
|         Three independent random variables that are uniformly distributed
 | |
|         between 0 and 1 for each returned quaternion.
 | |
| 
 | |
|     >>> R = random_rotation_matrix()
 | |
|     >>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4))
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     return quaternion_matrix(random_quaternion(rand))
 | |
| 
 | |
| 
 | |
| class Arcball(object):
 | |
|     """Virtual Trackball Control.
 | |
| 
 | |
|     >>> ball = Arcball()
 | |
|     >>> ball = Arcball(initial=numpy.identity(4))
 | |
|     >>> ball.place([320, 320], 320)
 | |
|     >>> ball.down([500, 250])
 | |
|     >>> ball.drag([475, 275])
 | |
|     >>> R = ball.matrix()
 | |
|     >>> numpy.allclose(numpy.sum(R), 3.90583455)
 | |
|     True
 | |
|     >>> ball = Arcball(initial=[0, 0, 0, 1])
 | |
|     >>> ball.place([320, 320], 320)
 | |
|     >>> ball.setaxes([1,1,0], [-1, 1, 0])
 | |
|     >>> ball.setconstrain(True)
 | |
|     >>> ball.down([400, 200])
 | |
|     >>> ball.drag([200, 400])
 | |
|     >>> R = ball.matrix()
 | |
|     >>> numpy.allclose(numpy.sum(R), 0.2055924)
 | |
|     True
 | |
|     >>> ball.next()
 | |
| 
 | |
|     """
 | |
| 
 | |
|     def __init__(self, initial=None):
 | |
|         """Initialize virtual trackball control.
 | |
| 
 | |
|         initial : quaternion or rotation matrix
 | |
| 
 | |
|         """
 | |
|         self._axis = None
 | |
|         self._axes = None
 | |
|         self._radius = 1.0
 | |
|         self._center = [0.0, 0.0]
 | |
|         self._vdown = numpy.array([0, 0, 1], dtype=numpy.float64)
 | |
|         self._constrain = False
 | |
| 
 | |
|         if initial is None:
 | |
|             self._qdown = numpy.array([0, 0, 0, 1], dtype=numpy.float64)
 | |
|         else:
 | |
|             initial = numpy.array(initial, dtype=numpy.float64)
 | |
|             if initial.shape == (4, 4):
 | |
|                 self._qdown = quaternion_from_matrix(initial)
 | |
|             elif initial.shape == (4, ):
 | |
|                 initial /= vector_norm(initial)
 | |
|                 self._qdown = initial
 | |
|             else:
 | |
|                 raise ValueError("initial not a quaternion or matrix.")
 | |
| 
 | |
|         self._qnow = self._qpre = self._qdown
 | |
| 
 | |
|     def place(self, center, radius):
 | |
|         """Place Arcball, e.g. when window size changes.
 | |
| 
 | |
|         center : sequence[2]
 | |
|             Window coordinates of trackball center.
 | |
|         radius : float
 | |
|             Radius of trackball in window coordinates.
 | |
| 
 | |
|         """
 | |
|         self._radius = float(radius)
 | |
|         self._center[0] = center[0]
 | |
|         self._center[1] = center[1]
 | |
| 
 | |
|     def setaxes(self, *axes):
 | |
|         """Set axes to constrain rotations."""
 | |
|         if axes is None:
 | |
|             self._axes = None
 | |
|         else:
 | |
|             self._axes = [unit_vector(axis) for axis in axes]
 | |
| 
 | |
|     def setconstrain(self, constrain):
 | |
|         """Set state of constrain to axis mode."""
 | |
|         self._constrain = constrain == True
 | |
| 
 | |
|     def getconstrain(self):
 | |
|         """Return state of constrain to axis mode."""
 | |
|         return self._constrain
 | |
| 
 | |
|     def down(self, point):
 | |
|         """Set initial cursor window coordinates and pick constrain-axis."""
 | |
|         self._vdown = arcball_map_to_sphere(point, self._center, self._radius)
 | |
|         self._qdown = self._qpre = self._qnow
 | |
| 
 | |
|         if self._constrain and self._axes is not None:
 | |
|             self._axis = arcball_nearest_axis(self._vdown, self._axes)
 | |
|             self._vdown = arcball_constrain_to_axis(self._vdown, self._axis)
 | |
|         else:
 | |
|             self._axis = None
 | |
| 
 | |
|     def drag(self, point):
 | |
|         """Update current cursor window coordinates."""
 | |
|         vnow = arcball_map_to_sphere(point, self._center, self._radius)
 | |
| 
 | |
|         if self._axis is not None:
 | |
|             vnow = arcball_constrain_to_axis(vnow, self._axis)
 | |
| 
 | |
|         self._qpre = self._qnow
 | |
| 
 | |
|         t = numpy.cross(self._vdown, vnow)
 | |
|         if numpy.dot(t, t) < _EPS:
 | |
|             self._qnow = self._qdown
 | |
|         else:
 | |
|             q = [t[0], t[1], t[2], numpy.dot(self._vdown, vnow)]
 | |
|             self._qnow = quaternion_multiply(q, self._qdown)
 | |
| 
 | |
|     def next(self, acceleration=0.0):
 | |
|         """Continue rotation in direction of last drag."""
 | |
|         q = quaternion_slerp(self._qpre, self._qnow, 2.0+acceleration, False)
 | |
|         self._qpre, self._qnow = self._qnow, q
 | |
| 
 | |
|     def matrix(self):
 | |
|         """Return homogeneous rotation matrix."""
 | |
|         return quaternion_matrix(self._qnow)
 | |
| 
 | |
| 
 | |
| def arcball_map_to_sphere(point, center, radius):
 | |
|     """Return unit sphere coordinates from window coordinates."""
 | |
|     v = numpy.array(((point[0] - center[0]) / radius,
 | |
|                      (center[1] - point[1]) / radius,
 | |
|                      0.0), dtype=numpy.float64)
 | |
|     n = v[0]*v[0] + v[1]*v[1]
 | |
|     if n > 1.0:
 | |
|         v /= math.sqrt(n) # position outside of sphere
 | |
|     else:
 | |
|         v[2] = math.sqrt(1.0 - n)
 | |
|     return v
 | |
| 
 | |
| 
 | |
| def arcball_constrain_to_axis(point, axis):
 | |
|     """Return sphere point perpendicular to axis."""
 | |
|     v = numpy.array(point, dtype=numpy.float64, copy=True)
 | |
|     a = numpy.array(axis, dtype=numpy.float64, copy=True)
 | |
|     v -= a * numpy.dot(a, v) # on plane
 | |
|     n = vector_norm(v)
 | |
|     if n > _EPS:
 | |
|         if v[2] < 0.0:
 | |
|             v *= -1.0
 | |
|         v /= n
 | |
|         return v
 | |
|     if a[2] == 1.0:
 | |
|         return numpy.array([1, 0, 0], dtype=numpy.float64)
 | |
|     return unit_vector([-a[1], a[0], 0])
 | |
| 
 | |
| 
 | |
| def arcball_nearest_axis(point, axes):
 | |
|     """Return axis, which arc is nearest to point."""
 | |
|     point = numpy.array(point, dtype=numpy.float64, copy=False)
 | |
|     nearest = None
 | |
|     mx = -1.0
 | |
|     for axis in axes:
 | |
|         t = numpy.dot(arcball_constrain_to_axis(point, axis), point)
 | |
|         if t > mx:
 | |
|             nearest = axis
 | |
|             mx = t
 | |
|     return nearest
 | |
| 
 | |
| 
 | |
| # epsilon for testing whether a number is close to zero
 | |
| _EPS = numpy.finfo(float).eps * 4.0
 | |
| 
 | |
| # axis sequences for Euler angles
 | |
| _NEXT_AXIS = [1, 2, 0, 1]
 | |
| 
 | |
| # map axes strings to/from tuples of inner axis, parity, repetition, frame
 | |
| _AXES2TUPLE = {
 | |
|     'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0),
 | |
|     'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0),
 | |
|     'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0),
 | |
|     'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0),
 | |
|     'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1),
 | |
|     'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1),
 | |
|     'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1),
 | |
|     'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)}
 | |
| 
 | |
| _TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items())
 | |
| 
 | |
| # helper functions
 | |
| 
 | |
| def vector_norm(data, axis=None, out=None):
 | |
|     """Return length, i.e. eucledian norm, of ndarray along axis.
 | |
| 
 | |
|     >>> v = numpy.random.random(3)
 | |
|     >>> n = vector_norm(v)
 | |
|     >>> numpy.allclose(n, numpy.linalg.norm(v))
 | |
|     True
 | |
|     >>> v = numpy.random.rand(6, 5, 3)
 | |
|     >>> n = vector_norm(v, axis=-1)
 | |
|     >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2)))
 | |
|     True
 | |
|     >>> n = vector_norm(v, axis=1)
 | |
|     >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
 | |
|     True
 | |
|     >>> v = numpy.random.rand(5, 4, 3)
 | |
|     >>> n = numpy.empty((5, 3), dtype=numpy.float64)
 | |
|     >>> vector_norm(v, axis=1, out=n)
 | |
|     >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
 | |
|     True
 | |
|     >>> vector_norm([])
 | |
|     0.0
 | |
|     >>> vector_norm([1.0])
 | |
|     1.0
 | |
| 
 | |
|     """
 | |
|     data = numpy.array(data, dtype=numpy.float64, copy=True)
 | |
|     if out is None:
 | |
|         if data.ndim == 1:
 | |
|             return math.sqrt(numpy.dot(data, data))
 | |
|         data *= data
 | |
|         out = numpy.atleast_1d(numpy.sum(data, axis=axis))
 | |
|         numpy.sqrt(out, out)
 | |
|         return out
 | |
|     else:
 | |
|         data *= data
 | |
|         numpy.sum(data, axis=axis, out=out)
 | |
|         numpy.sqrt(out, out)
 | |
| 
 | |
| 
 | |
| def unit_vector(data, axis=None, out=None):
 | |
|     """Return ndarray normalized by length, i.e. eucledian norm, along axis.
 | |
| 
 | |
|     >>> v0 = numpy.random.random(3)
 | |
|     >>> v1 = unit_vector(v0)
 | |
|     >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
 | |
|     True
 | |
|     >>> v0 = numpy.random.rand(5, 4, 3)
 | |
|     >>> v1 = unit_vector(v0, axis=-1)
 | |
|     >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2)
 | |
|     >>> numpy.allclose(v1, v2)
 | |
|     True
 | |
|     >>> v1 = unit_vector(v0, axis=1)
 | |
|     >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1)
 | |
|     >>> numpy.allclose(v1, v2)
 | |
|     True
 | |
|     >>> v1 = numpy.empty((5, 4, 3), dtype=numpy.float64)
 | |
|     >>> unit_vector(v0, axis=1, out=v1)
 | |
|     >>> numpy.allclose(v1, v2)
 | |
|     True
 | |
|     >>> list(unit_vector([]))
 | |
|     []
 | |
|     >>> list(unit_vector([1.0]))
 | |
|     [1.0]
 | |
| 
 | |
|     """
 | |
|     if out is None:
 | |
|         data = numpy.array(data, dtype=numpy.float64, copy=True)
 | |
|         if data.ndim == 1:
 | |
|             data /= math.sqrt(numpy.dot(data, data))
 | |
|             return data
 | |
|     else:
 | |
|         if out is not data:
 | |
|             out[:] = numpy.array(data, copy=False)
 | |
|         data = out
 | |
|     length = numpy.atleast_1d(numpy.sum(data*data, axis))
 | |
|     numpy.sqrt(length, length)
 | |
|     if axis is not None:
 | |
|         length = numpy.expand_dims(length, axis)
 | |
|     data /= length
 | |
|     if out is None:
 | |
|         return data
 | |
| 
 | |
| 
 | |
| def random_vector(size):
 | |
|     """Return array of random doubles in the half-open interval [0.0, 1.0).
 | |
| 
 | |
|     >>> v = random_vector(10000)
 | |
|     >>> numpy.all(v >= 0.0) and numpy.all(v < 1.0)
 | |
|     True
 | |
|     >>> v0 = random_vector(10)
 | |
|     >>> v1 = random_vector(10)
 | |
|     >>> numpy.any(v0 == v1)
 | |
|     False
 | |
| 
 | |
|     """
 | |
|     return numpy.random.random(size)
 | |
| 
 | |
| 
 | |
| def inverse_matrix(matrix):
 | |
|     """Return inverse of square transformation matrix.
 | |
| 
 | |
|     >>> M0 = random_rotation_matrix()
 | |
|     >>> M1 = inverse_matrix(M0.T)
 | |
|     >>> numpy.allclose(M1, numpy.linalg.inv(M0.T))
 | |
|     True
 | |
|     >>> for size in range(1, 7):
 | |
|     ...     M0 = numpy.random.rand(size, size)
 | |
|     ...     M1 = inverse_matrix(M0)
 | |
|     ...     if not numpy.allclose(M1, numpy.linalg.inv(M0)): print size
 | |
| 
 | |
|     """
 | |
|     return numpy.linalg.inv(matrix)
 | |
| 
 | |
| 
 | |
| def concatenate_matrices(*matrices):
 | |
|     """Return concatenation of series of transformation matrices.
 | |
| 
 | |
|     >>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5
 | |
|     >>> numpy.allclose(M, concatenate_matrices(M))
 | |
|     True
 | |
|     >>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T))
 | |
|     True
 | |
| 
 | |
|     """
 | |
|     M = numpy.identity(4)
 | |
|     for i in matrices:
 | |
|         M = numpy.dot(M, i)
 | |
|     return M
 | |
| 
 | |
| 
 | |
| def is_same_transform(matrix0, matrix1):
 | |
|     """Return True if two matrices perform same transformation.
 | |
| 
 | |
|     >>> is_same_transform(numpy.identity(4), numpy.identity(4))
 | |
|     True
 | |
|     >>> is_same_transform(numpy.identity(4), random_rotation_matrix())
 | |
|     False
 | |
| 
 | |
|     """
 | |
|     matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True)
 | |
|     matrix0 /= matrix0[3, 3]
 | |
|     matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True)
 | |
|     matrix1 /= matrix1[3, 3]
 | |
|     return numpy.allclose(matrix0, matrix1)
 | |
| 
 | |
| 
 | |
| def _import_module(module_name, warn=True, prefix='_py_', ignore='_'):
 | |
|     """Try import all public attributes from module into global namespace.
 | |
| 
 | |
|     Existing attributes with name clashes are renamed with prefix.
 | |
|     Attributes starting with underscore are ignored by default.
 | |
| 
 | |
|     Return True on successful import.
 | |
| 
 | |
|     """
 | |
|     try:
 | |
|         module = __import__(module_name)
 | |
|     except ImportError:
 | |
|         if warn:
 | |
|             warnings.warn("Failed to import module " + module_name)
 | |
|     else:
 | |
|         for attr in dir(module):
 | |
|             if ignore and attr.startswith(ignore):
 | |
|                 continue
 | |
|             if prefix:
 | |
|                 if attr in globals():
 | |
|                     globals()[prefix + attr] = globals()[attr]
 | |
|                 elif warn:
 | |
|                     warnings.warn("No Python implementation of " + attr)
 | |
|             globals()[attr] = getattr(module, attr)
 | |
|         return True
 |