315 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			315 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #ifdef HAVE_TBB
 | |
| #include "tbb/task_scheduler_init.h"
 | |
| #endif
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| class CV_solvePnPRansac_Test : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     CV_solvePnPRansac_Test()
 | |
|     {
 | |
|         eps[SOLVEPNP_ITERATIVE] = 1.0e-2;
 | |
|         eps[SOLVEPNP_EPNP] = 1.0e-2;
 | |
|         eps[SOLVEPNP_P3P] = 1.0e-2;
 | |
|         eps[SOLVEPNP_DLS] = 1.0e-2;
 | |
|         totalTestsCount = 10;
 | |
|     }
 | |
|     ~CV_solvePnPRansac_Test() {}
 | |
| protected:
 | |
|     void generate3DPointCloud(vector<Point3f>& points, Point3f pmin = Point3f(-1,
 | |
|         -1, 5), Point3f pmax = Point3f(1, 1, 10))
 | |
|     {
 | |
|         const Point3f delta = pmax - pmin;
 | |
|         for (size_t i = 0; i < points.size(); i++)
 | |
|         {
 | |
|             Point3f p(float(rand()) / RAND_MAX, float(rand()) / RAND_MAX,
 | |
|                 float(rand()) / RAND_MAX);
 | |
|             p.x *= delta.x;
 | |
|             p.y *= delta.y;
 | |
|             p.z *= delta.z;
 | |
|             p = p + pmin;
 | |
|             points[i] = p;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void generateCameraMatrix(Mat& cameraMatrix, RNG& rng)
 | |
|     {
 | |
|         const double fcMinVal = 1e-3;
 | |
|         const double fcMaxVal = 100;
 | |
|         cameraMatrix.create(3, 3, CV_64FC1);
 | |
|         cameraMatrix.setTo(Scalar(0));
 | |
|         cameraMatrix.at<double>(0,0) = rng.uniform(fcMinVal, fcMaxVal);
 | |
|         cameraMatrix.at<double>(1,1) = rng.uniform(fcMinVal, fcMaxVal);
 | |
|         cameraMatrix.at<double>(0,2) = rng.uniform(fcMinVal, fcMaxVal);
 | |
|         cameraMatrix.at<double>(1,2) = rng.uniform(fcMinVal, fcMaxVal);
 | |
|         cameraMatrix.at<double>(2,2) = 1;
 | |
|     }
 | |
| 
 | |
|     void generateDistCoeffs(Mat& distCoeffs, RNG& rng)
 | |
|     {
 | |
|         distCoeffs = Mat::zeros(4, 1, CV_64FC1);
 | |
|         for (int i = 0; i < 3; i++)
 | |
|             distCoeffs.at<double>(i,0) = rng.uniform(0.0, 1.0e-6);
 | |
|     }
 | |
| 
 | |
|     void generatePose(Mat& rvec, Mat& tvec, RNG& rng)
 | |
|     {
 | |
|         const double minVal = 1.0e-3;
 | |
|         const double maxVal = 1.0;
 | |
|         rvec.create(3, 1, CV_64FC1);
 | |
|         tvec.create(3, 1, CV_64FC1);
 | |
|         for (int i = 0; i < 3; i++)
 | |
|         {
 | |
|             rvec.at<double>(i,0) = rng.uniform(minVal, maxVal);
 | |
|             tvec.at<double>(i,0) = rng.uniform(minVal, maxVal/10);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     virtual bool runTest(RNG& rng, int mode, int method, const vector<Point3f>& points, const double* epsilon, double& maxError)
 | |
|     {
 | |
|         Mat rvec, tvec;
 | |
|         vector<int> inliers;
 | |
|         Mat trueRvec, trueTvec;
 | |
|         Mat intrinsics, distCoeffs;
 | |
|         generateCameraMatrix(intrinsics, rng);
 | |
|         if (mode == 0)
 | |
|             distCoeffs = Mat::zeros(4, 1, CV_64FC1);
 | |
|         else
 | |
|             generateDistCoeffs(distCoeffs, rng);
 | |
|         generatePose(trueRvec, trueTvec, rng);
 | |
| 
 | |
|         vector<Point2f> projectedPoints;
 | |
|         projectedPoints.resize(points.size());
 | |
|         projectPoints(Mat(points), trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints);
 | |
|         for (size_t i = 0; i < projectedPoints.size(); i++)
 | |
|         {
 | |
|             if (i % 20 == 0)
 | |
|             {
 | |
|                 projectedPoints[i] = projectedPoints[rng.uniform(0,(int)points.size()-1)];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         solvePnPRansac(points, projectedPoints, intrinsics, distCoeffs, rvec, tvec,
 | |
|             false, 500, 0.5, 0.99, inliers, method);
 | |
| 
 | |
|         bool isTestSuccess = inliers.size() >= points.size()*0.95;
 | |
| 
 | |
|         double rvecDiff = norm(rvec-trueRvec), tvecDiff = norm(tvec-trueTvec);
 | |
|         isTestSuccess = isTestSuccess && rvecDiff < epsilon[method] && tvecDiff < epsilon[method];
 | |
|         double error = rvecDiff > tvecDiff ? rvecDiff : tvecDiff;
 | |
|         //cout << error << " " << inliers.size() << " " << eps[method] << endl;
 | |
|         if (error > maxError)
 | |
|             maxError = error;
 | |
| 
 | |
|         return isTestSuccess;
 | |
|     }
 | |
| 
 | |
|     void run(int)
 | |
|     {
 | |
|         ts->set_failed_test_info(cvtest::TS::OK);
 | |
| 
 | |
|         vector<Point3f> points, points_dls;
 | |
|         const int pointsCount = 500;
 | |
|         points.resize(pointsCount);
 | |
|         generate3DPointCloud(points);
 | |
| 
 | |
|         const int methodsCount = 4;
 | |
|         RNG rng = ts->get_rng();
 | |
| 
 | |
| 
 | |
|         for (int mode = 0; mode < 2; mode++)
 | |
|         {
 | |
|             for (int method = 0; method < methodsCount; method++)
 | |
|             {
 | |
|                 double maxError = 0;
 | |
|                 int successfulTestsCount = 0;
 | |
|                 for (int testIndex = 0; testIndex < totalTestsCount; testIndex++)
 | |
|                 {
 | |
|                     if (runTest(rng, mode, method, points, eps, maxError))
 | |
|                         successfulTestsCount++;
 | |
|                 }
 | |
|                 //cout <<  maxError << " " << successfulTestsCount << endl;
 | |
|                 if (successfulTestsCount < 0.7*totalTestsCount)
 | |
|                 {
 | |
|                     ts->printf( cvtest::TS::LOG, "Invalid accuracy for method %d, failed %d tests from %d, maximum error equals %f, distortion mode equals %d\n",
 | |
|                         method, totalTestsCount - successfulTestsCount, totalTestsCount, maxError, mode);
 | |
|                     ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     double eps[4];
 | |
|     int totalTestsCount;
 | |
| };
 | |
| 
 | |
| class CV_solvePnP_Test : public CV_solvePnPRansac_Test
 | |
| {
 | |
| public:
 | |
|     CV_solvePnP_Test()
 | |
|     {
 | |
|         eps[SOLVEPNP_ITERATIVE] = 1.0e-6;
 | |
|         eps[SOLVEPNP_EPNP] = 1.0e-6;
 | |
|         eps[SOLVEPNP_P3P] = 1.0e-4;
 | |
|         eps[SOLVEPNP_DLS] = 1.0e-4;
 | |
|         totalTestsCount = 1000;
 | |
|     }
 | |
| 
 | |
|     ~CV_solvePnP_Test() {}
 | |
| protected:
 | |
|     virtual bool runTest(RNG& rng, int mode, int method, const vector<Point3f>& points, const double* epsilon, double& maxError)
 | |
|     {
 | |
|         Mat rvec, tvec;
 | |
|         Mat trueRvec, trueTvec;
 | |
|         Mat intrinsics, distCoeffs;
 | |
|         generateCameraMatrix(intrinsics, rng);
 | |
|         if (mode == 0)
 | |
|             distCoeffs = Mat::zeros(4, 1, CV_64FC1);
 | |
|         else
 | |
|             generateDistCoeffs(distCoeffs, rng);
 | |
|         generatePose(trueRvec, trueTvec, rng);
 | |
| 
 | |
|         std::vector<Point3f> opoints;
 | |
|         if (method == 2)
 | |
|         {
 | |
|             opoints = std::vector<Point3f>(points.begin(), points.begin()+4);
 | |
|         }
 | |
|         else if(method == 3)
 | |
|         {
 | |
|             opoints = std::vector<Point3f>(points.begin(), points.begin()+50);
 | |
|         }
 | |
|         else
 | |
|             opoints = points;
 | |
| 
 | |
|         vector<Point2f> projectedPoints;
 | |
|         projectedPoints.resize(opoints.size());
 | |
|         projectPoints(Mat(opoints), trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints);
 | |
| 
 | |
|         solvePnP(opoints, projectedPoints, intrinsics, distCoeffs, rvec, tvec,
 | |
|             false, method);
 | |
| 
 | |
|         double rvecDiff = norm(rvec-trueRvec), tvecDiff = norm(tvec-trueTvec);
 | |
|         bool isTestSuccess = rvecDiff < epsilon[method] && tvecDiff < epsilon[method];
 | |
| 
 | |
|         double error = rvecDiff > tvecDiff ? rvecDiff : tvecDiff;
 | |
|         if (error > maxError)
 | |
|             maxError = error;
 | |
| 
 | |
|         return isTestSuccess;
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST(Calib3d_SolvePnPRansac, accuracy) { CV_solvePnPRansac_Test test; test.safe_run(); }
 | |
| TEST(Calib3d_SolvePnP, accuracy) { CV_solvePnP_Test test; test.safe_run(); }
 | |
| 
 | |
| 
 | |
| #ifdef HAVE_TBB
 | |
| 
 | |
| TEST(DISABLED_Calib3d_SolvePnPRansac, concurrency)
 | |
| {
 | |
|     int count = 7*13;
 | |
| 
 | |
|     Mat object(1, count, CV_32FC3);
 | |
|     randu(object, -100, 100);
 | |
| 
 | |
|     Mat camera_mat(3, 3, CV_32FC1);
 | |
|     randu(camera_mat, 0.5, 1);
 | |
|     camera_mat.at<float>(0, 1) = 0.f;
 | |
|     camera_mat.at<float>(1, 0) = 0.f;
 | |
|     camera_mat.at<float>(2, 0) = 0.f;
 | |
|     camera_mat.at<float>(2, 1) = 0.f;
 | |
| 
 | |
|     Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0));
 | |
| 
 | |
|     vector<cv::Point2f> image_vec;
 | |
|     Mat rvec_gold(1, 3, CV_32FC1);
 | |
|     randu(rvec_gold, 0, 1);
 | |
|     Mat tvec_gold(1, 3, CV_32FC1);
 | |
|     randu(tvec_gold, 0, 1);
 | |
|     projectPoints(object, rvec_gold, tvec_gold, camera_mat, dist_coef, image_vec);
 | |
| 
 | |
|     Mat image(1, count, CV_32FC2, &image_vec[0]);
 | |
| 
 | |
|     Mat rvec1, rvec2;
 | |
|     Mat tvec1, tvec2;
 | |
| 
 | |
|     {
 | |
|         // limit concurrency to get deterministic result
 | |
|         cv::theRNG().state = 20121010;
 | |
|         tbb::task_scheduler_init one_thread(1);
 | |
|         solvePnPRansac(object, image, camera_mat, dist_coef, rvec1, tvec1);
 | |
|     }
 | |
| 
 | |
|     if(1)
 | |
|     {
 | |
|         Mat rvec;
 | |
|         Mat tvec;
 | |
|         // parallel executions
 | |
|         for(int i = 0; i < 10; ++i)
 | |
|         {
 | |
|             cv::theRNG().state = 20121010;
 | |
|             solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         // single thread again
 | |
|         cv::theRNG().state = 20121010;
 | |
|         tbb::task_scheduler_init one_thread(1);
 | |
|         solvePnPRansac(object, image, camera_mat, dist_coef, rvec2, tvec2);
 | |
|     }
 | |
| 
 | |
|     double rnorm = cvtest::norm(rvec1, rvec2, NORM_INF);
 | |
|     double tnorm = cvtest::norm(tvec1, tvec2, NORM_INF);
 | |
| 
 | |
|     EXPECT_LT(rnorm, 1e-6);
 | |
|     EXPECT_LT(tnorm, 1e-6);
 | |
| 
 | |
| }
 | |
| #endif
 | 
