 8a4a1bb018
			
		
	
	8a4a1bb018
	
	
	
		
			
			1. someMatrix.data -> someMatrix.prt() 2. someMatrix.data + someMatrix.step * lineIndex -> someMatrix.ptr( lineIndex ) 3. (SomeType*) someMatrix.data -> someMatrix.ptr<SomeType>() 4. someMatrix.data -> !someMatrix.empty() ( or !someMatrix.data -> someMatrix.empty() ) in logical expressions
		
			
				
	
	
		
			1878 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1878 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| #include "opencv2/calib3d/calib3d_c.h"
 | |
| 
 | |
| #include <limits>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| 
 | |
| #if 0
 | |
| class CV_ProjectPointsTest : public cvtest::ArrayTest
 | |
| {
 | |
| public:
 | |
|     CV_ProjectPointsTest();
 | |
| 
 | |
| protected:
 | |
|     int read_params( CvFileStorage* fs );
 | |
|     void fill_array( int test_case_idx, int i, int j, Mat& arr );
 | |
|     int prepare_test_case( int test_case_idx );
 | |
|     void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
 | |
|     double get_success_error_level( int test_case_idx, int i, int j );
 | |
|     void run_func();
 | |
|     void prepare_to_validation( int );
 | |
| 
 | |
|     bool calc_jacobians;
 | |
| };
 | |
| 
 | |
| 
 | |
| CV_ProjectPointsTest::CV_ProjectPointsTest()
 | |
|     : cvtest::ArrayTest( "3d-ProjectPoints", "cvProjectPoints2", "" )
 | |
| {
 | |
|     test_array[INPUT].push_back(NULL);  // rotation vector
 | |
|     test_array[OUTPUT].push_back(NULL); // rotation matrix
 | |
|     test_array[OUTPUT].push_back(NULL); // jacobian (J)
 | |
|     test_array[OUTPUT].push_back(NULL); // rotation vector (backward transform result)
 | |
|     test_array[OUTPUT].push_back(NULL); // inverse transform jacobian (J1)
 | |
|     test_array[OUTPUT].push_back(NULL); // J*J1 (or J1*J) == I(3x3)
 | |
|     test_array[REF_OUTPUT].push_back(NULL);
 | |
|     test_array[REF_OUTPUT].push_back(NULL);
 | |
|     test_array[REF_OUTPUT].push_back(NULL);
 | |
|     test_array[REF_OUTPUT].push_back(NULL);
 | |
|     test_array[REF_OUTPUT].push_back(NULL);
 | |
| 
 | |
|     element_wise_relative_error = false;
 | |
|     calc_jacobians = false;
 | |
| }
 | |
| 
 | |
| 
 | |
| int CV_ProjectPointsTest::read_params( CvFileStorage* fs )
 | |
| {
 | |
|     int code = cvtest::ArrayTest::read_params( fs );
 | |
|     return code;
 | |
| }
 | |
| 
 | |
| 
 | |
| void CV_ProjectPointsTest::get_test_array_types_and_sizes(
 | |
|     int /*test_case_idx*/, vector<vector<Size> >& sizes, vector<vector<int> >& types )
 | |
| {
 | |
|     RNG& rng = ts->get_rng();
 | |
|     int depth = cvtest::randInt(rng) % 2 == 0 ? CV_32F : CV_64F;
 | |
|     int i, code;
 | |
| 
 | |
|     code = cvtest::randInt(rng) % 3;
 | |
|     types[INPUT][0] = CV_MAKETYPE(depth, 1);
 | |
| 
 | |
|     if( code == 0 )
 | |
|     {
 | |
|         sizes[INPUT][0] = cvSize(1,1);
 | |
|         types[INPUT][0] = CV_MAKETYPE(depth, 3);
 | |
|     }
 | |
|     else if( code == 1 )
 | |
|         sizes[INPUT][0] = cvSize(3,1);
 | |
|     else
 | |
|         sizes[INPUT][0] = cvSize(1,3);
 | |
| 
 | |
|     sizes[OUTPUT][0] = cvSize(3, 3);
 | |
|     types[OUTPUT][0] = CV_MAKETYPE(depth, 1);
 | |
| 
 | |
|     types[OUTPUT][1] = CV_MAKETYPE(depth, 1);
 | |
| 
 | |
|     if( cvtest::randInt(rng) % 2 )
 | |
|         sizes[OUTPUT][1] = cvSize(3,9);
 | |
|     else
 | |
|         sizes[OUTPUT][1] = cvSize(9,3);
 | |
| 
 | |
|     types[OUTPUT][2] = types[INPUT][0];
 | |
|     sizes[OUTPUT][2] = sizes[INPUT][0];
 | |
| 
 | |
|     types[OUTPUT][3] = types[OUTPUT][1];
 | |
|     sizes[OUTPUT][3] = cvSize(sizes[OUTPUT][1].height, sizes[OUTPUT][1].width);
 | |
| 
 | |
|     types[OUTPUT][4] = types[OUTPUT][1];
 | |
|     sizes[OUTPUT][4] = cvSize(3,3);
 | |
| 
 | |
|     calc_jacobians = 1;//cvtest::randInt(rng) % 3 != 0;
 | |
|     if( !calc_jacobians )
 | |
|         sizes[OUTPUT][1] = sizes[OUTPUT][3] = sizes[OUTPUT][4] = cvSize(0,0);
 | |
| 
 | |
|     for( i = 0; i < 5; i++ )
 | |
|     {
 | |
|         types[REF_OUTPUT][i] = types[OUTPUT][i];
 | |
|         sizes[REF_OUTPUT][i] = sizes[OUTPUT][i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| double CV_ProjectPointsTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int j )
 | |
| {
 | |
|     return j == 4 ? 1e-2 : 1e-2;
 | |
| }
 | |
| 
 | |
| 
 | |
| void CV_ProjectPointsTest::fill_array( int /*test_case_idx*/, int /*i*/, int /*j*/, CvMat* arr )
 | |
| {
 | |
|     double r[3], theta0, theta1, f;
 | |
|     CvMat _r = cvMat( arr->rows, arr->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(arr->type)), r );
 | |
|     RNG& rng = ts->get_rng();
 | |
| 
 | |
|     r[0] = cvtest::randReal(rng)*CV_PI*2;
 | |
|     r[1] = cvtest::randReal(rng)*CV_PI*2;
 | |
|     r[2] = cvtest::randReal(rng)*CV_PI*2;
 | |
| 
 | |
|     theta0 = sqrt(r[0]*r[0] + r[1]*r[1] + r[2]*r[2]);
 | |
|     theta1 = fmod(theta0, CV_PI*2);
 | |
| 
 | |
|     if( theta1 > CV_PI )
 | |
|         theta1 = -(CV_PI*2 - theta1);
 | |
| 
 | |
|     f = theta1/(theta0 ? theta0 : 1);
 | |
|     r[0] *= f;
 | |
|     r[1] *= f;
 | |
|     r[2] *= f;
 | |
| 
 | |
|     cvTsConvert( &_r, arr );
 | |
| }
 | |
| 
 | |
| 
 | |
| int CV_ProjectPointsTest::prepare_test_case( int test_case_idx )
 | |
| {
 | |
|     int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
 | |
|     return code;
 | |
| }
 | |
| 
 | |
| 
 | |
| void CV_ProjectPointsTest::run_func()
 | |
| {
 | |
|     CvMat *v2m_jac = 0, *m2v_jac = 0;
 | |
|     if( calc_jacobians )
 | |
|     {
 | |
|         v2m_jac = &test_mat[OUTPUT][1];
 | |
|         m2v_jac = &test_mat[OUTPUT][3];
 | |
|     }
 | |
| 
 | |
|     cvProjectPoints2( &test_mat[INPUT][0], &test_mat[OUTPUT][0], v2m_jac );
 | |
|     cvProjectPoints2( &test_mat[OUTPUT][0], &test_mat[OUTPUT][2], m2v_jac );
 | |
| }
 | |
| 
 | |
| 
 | |
| void CV_ProjectPointsTest::prepare_to_validation( int /*test_case_idx*/ )
 | |
| {
 | |
|     const CvMat* vec = &test_mat[INPUT][0];
 | |
|     CvMat* m = &test_mat[REF_OUTPUT][0];
 | |
|     CvMat* vec2 = &test_mat[REF_OUTPUT][2];
 | |
|     CvMat* v2m_jac = 0, *m2v_jac = 0;
 | |
|     double theta0, theta1;
 | |
| 
 | |
|     if( calc_jacobians )
 | |
|     {
 | |
|         v2m_jac = &test_mat[REF_OUTPUT][1];
 | |
|         m2v_jac = &test_mat[REF_OUTPUT][3];
 | |
|     }
 | |
| 
 | |
| 
 | |
|     cvTsProjectPoints( vec, m, v2m_jac );
 | |
|     cvTsProjectPoints( m, vec2, m2v_jac );
 | |
|     cvTsCopy( vec, vec2 );
 | |
| 
 | |
|     theta0 = cvtest::norm( cvarrtomat(vec2), 0, CV_L2 );
 | |
|     theta1 = fmod( theta0, CV_PI*2 );
 | |
| 
 | |
|     if( theta1 > CV_PI )
 | |
|         theta1 = -(CV_PI*2 - theta1);
 | |
|     cvScale( vec2, vec2, theta1/(theta0 ? theta0 : 1) );
 | |
| 
 | |
|     if( calc_jacobians )
 | |
|     {
 | |
|         //cvInvert( v2m_jac, m2v_jac, CV_SVD );
 | |
|         if( cvtest::norm(cvarrtomat(&test_mat[OUTPUT][3]), 0, CV_C) < 1000 )
 | |
|         {
 | |
|             cvTsGEMM( &test_mat[OUTPUT][1], &test_mat[OUTPUT][3],
 | |
|                       1, 0, 0, &test_mat[OUTPUT][4],
 | |
|                       v2m_jac->rows == 3 ? 0 : CV_GEMM_A_T + CV_GEMM_B_T );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             cvTsSetIdentity( &test_mat[OUTPUT][4], cvScalarAll(1.) );
 | |
|             cvTsCopy( &test_mat[REF_OUTPUT][2], &test_mat[OUTPUT][2] );
 | |
|         }
 | |
|         cvTsSetIdentity( &test_mat[REF_OUTPUT][4], cvScalarAll(1.) );
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| CV_ProjectPointsTest ProjectPoints_test;
 | |
| 
 | |
| #endif
 | |
| 
 | |
| // --------------------------------- CV_CameraCalibrationTest --------------------------------------------
 | |
| 
 | |
| class CV_CameraCalibrationTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     CV_CameraCalibrationTest();
 | |
|     ~CV_CameraCalibrationTest();
 | |
|     void clear();
 | |
| protected:
 | |
|     int compare(double* val, double* refVal, int len,
 | |
|                 double eps, const char* paramName);
 | |
|     virtual void calibrate( int imageCount, int* pointCounts,
 | |
|         CvSize imageSize, CvPoint2D64f* imagePoints, CvPoint3D64f* objectPoints,
 | |
|         double* distortionCoeffs, double* cameraMatrix, double* translationVectors,
 | |
|         double* rotationMatrices, int flags ) = 0;
 | |
|     virtual void project( int pointCount, CvPoint3D64f* objectPoints,
 | |
|         double* rotationMatrix, double*  translationVector,
 | |
|         double* cameraMatrix, double* distortion, CvPoint2D64f* imagePoints ) = 0;
 | |
| 
 | |
|     void run(int);
 | |
| };
 | |
| 
 | |
| CV_CameraCalibrationTest::CV_CameraCalibrationTest()
 | |
| {
 | |
| }
 | |
| 
 | |
| CV_CameraCalibrationTest::~CV_CameraCalibrationTest()
 | |
| {
 | |
|     clear();
 | |
| }
 | |
| 
 | |
| void CV_CameraCalibrationTest::clear()
 | |
| {
 | |
|     cvtest::BaseTest::clear();
 | |
| }
 | |
| 
 | |
| int CV_CameraCalibrationTest::compare(double* val, double* ref_val, int len,
 | |
|                                       double eps, const char* param_name )
 | |
| {
 | |
|     return cvtest::cmpEps2_64f( ts, val, ref_val, len, eps, param_name );
 | |
| }
 | |
| 
 | |
| void CV_CameraCalibrationTest::run( int start_from )
 | |
| {
 | |
|     int code = cvtest::TS::OK;
 | |
|     cv::String            filepath;
 | |
|     cv::String            filename;
 | |
| 
 | |
|     CvSize          imageSize;
 | |
|     CvSize          etalonSize;
 | |
|     int             numImages;
 | |
| 
 | |
|     CvPoint2D64f*   imagePoints;
 | |
|     CvPoint3D64f*   objectPoints;
 | |
|     CvPoint2D64f*   reprojectPoints;
 | |
| 
 | |
|     double*       transVects;
 | |
|     double*       rotMatrs;
 | |
| 
 | |
|     double*       goodTransVects;
 | |
|     double*       goodRotMatrs;
 | |
| 
 | |
|     double          cameraMatrix[3*3];
 | |
|     double          distortion[5]={0,0,0,0,0};
 | |
| 
 | |
|     double          goodDistortion[4];
 | |
| 
 | |
|     int*            numbers;
 | |
|     FILE*           file = 0;
 | |
|     FILE*           datafile = 0;
 | |
|     int             i,j;
 | |
|     int             currImage;
 | |
|     int             currPoint;
 | |
| 
 | |
|     int             calibFlags;
 | |
|     char            i_dat_file[100];
 | |
|     int             numPoints;
 | |
|     int numTests;
 | |
|     int currTest;
 | |
| 
 | |
|     imagePoints     = 0;
 | |
|     objectPoints    = 0;
 | |
|     reprojectPoints = 0;
 | |
|     numbers         = 0;
 | |
| 
 | |
|     transVects      = 0;
 | |
|     rotMatrs        = 0;
 | |
|     goodTransVects  = 0;
 | |
|     goodRotMatrs    = 0;
 | |
|     int progress = 0;
 | |
|     int values_read = -1;
 | |
| 
 | |
|     filepath = cv::format("%scv/cameracalibration/", ts->get_data_path().c_str() );
 | |
|     filename = cv::format("%sdatafiles.txt", filepath.c_str() );
 | |
|     datafile = fopen( filename.c_str(), "r" );
 | |
|     if( datafile == 0 )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "Could not open file with list of test files: %s\n", filename.c_str() );
 | |
|         code = cvtest::TS::FAIL_MISSING_TEST_DATA;
 | |
|         goto _exit_;
 | |
|     }
 | |
| 
 | |
|     values_read = fscanf(datafile,"%d",&numTests);
 | |
|     CV_Assert(values_read == 1);
 | |
| 
 | |
|     for( currTest = start_from; currTest < numTests; currTest++ )
 | |
|     {
 | |
|         values_read = fscanf(datafile,"%s",i_dat_file);
 | |
|         CV_Assert(values_read == 1);
 | |
|         filename = cv::format("%s%s", filepath.c_str(), i_dat_file);
 | |
|         file = fopen(filename.c_str(),"r");
 | |
| 
 | |
|         ts->update_context( this, currTest, true );
 | |
| 
 | |
|         if( file == 0 )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG,
 | |
|                 "Can't open current test file: %s\n",filename.c_str());
 | |
|             if( numTests == 1 )
 | |
|             {
 | |
|                 code = cvtest::TS::FAIL_MISSING_TEST_DATA;
 | |
|                 goto _exit_;
 | |
|             }
 | |
|             continue; // if there is more than one test, just skip the test
 | |
|         }
 | |
| 
 | |
|         values_read = fscanf(file,"%d %d\n",&(imageSize.width),&(imageSize.height));
 | |
|         CV_Assert(values_read == 2);
 | |
|         if( imageSize.width <= 0 || imageSize.height <= 0 )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "Image size in test file is incorrect\n" );
 | |
|             code = cvtest::TS::FAIL_INVALID_TEST_DATA;
 | |
|             goto _exit_;
 | |
|         }
 | |
| 
 | |
|         /* Read etalon size */
 | |
|         values_read = fscanf(file,"%d %d\n",&(etalonSize.width),&(etalonSize.height));
 | |
|         CV_Assert(values_read == 2);
 | |
|         if( etalonSize.width <= 0 || etalonSize.height <= 0 )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "Pattern size in test file is incorrect\n" );
 | |
|             code = cvtest::TS::FAIL_INVALID_TEST_DATA;
 | |
|             goto _exit_;
 | |
|         }
 | |
| 
 | |
|         numPoints = etalonSize.width * etalonSize.height;
 | |
| 
 | |
|         /* Read number of images */
 | |
|         values_read = fscanf(file,"%d\n",&numImages);
 | |
|         CV_Assert(values_read == 1);
 | |
|         if( numImages <=0 )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "Number of images in test file is incorrect\n");
 | |
|             code = cvtest::TS::FAIL_INVALID_TEST_DATA;
 | |
|             goto _exit_;
 | |
|         }
 | |
| 
 | |
|         /* Need to allocate memory */
 | |
|         imagePoints     = (CvPoint2D64f*)cvAlloc( numPoints *
 | |
|                                                     numImages * sizeof(CvPoint2D64f));
 | |
| 
 | |
|         objectPoints    = (CvPoint3D64f*)cvAlloc( numPoints *
 | |
|                                                     numImages * sizeof(CvPoint3D64f));
 | |
| 
 | |
|         reprojectPoints = (CvPoint2D64f*)cvAlloc( numPoints *
 | |
|                                                     numImages * sizeof(CvPoint2D64f));
 | |
| 
 | |
|         /* Alloc memory for numbers */
 | |
|         numbers = (int*)cvAlloc( numImages * sizeof(int));
 | |
| 
 | |
|         /* Fill it by numbers of points of each image*/
 | |
|         for( currImage = 0; currImage < numImages; currImage++ )
 | |
|         {
 | |
|             numbers[currImage] = etalonSize.width * etalonSize.height;
 | |
|         }
 | |
| 
 | |
|         /* Allocate memory for translate vectors and rotmatrixs*/
 | |
|         transVects     = (double*)cvAlloc(3 * 1 * numImages * sizeof(double));
 | |
|         rotMatrs       = (double*)cvAlloc(3 * 3 * numImages * sizeof(double));
 | |
| 
 | |
|         goodTransVects = (double*)cvAlloc(3 * 1 * numImages * sizeof(double));
 | |
|         goodRotMatrs   = (double*)cvAlloc(3 * 3 * numImages * sizeof(double));
 | |
| 
 | |
|         /* Read object points */
 | |
|         i = 0;/* shift for current point */
 | |
|         for( currImage = 0; currImage < numImages; currImage++ )
 | |
|         {
 | |
|             for( currPoint = 0; currPoint < numPoints; currPoint++ )
 | |
|             {
 | |
|                 double x,y,z;
 | |
|                 values_read = fscanf(file,"%lf %lf %lf\n",&x,&y,&z);
 | |
|                 CV_Assert(values_read == 3);
 | |
| 
 | |
|                 (objectPoints+i)->x = x;
 | |
|                 (objectPoints+i)->y = y;
 | |
|                 (objectPoints+i)->z = z;
 | |
|                 i++;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Read image points */
 | |
|         i = 0;/* shift for current point */
 | |
|         for( currImage = 0; currImage < numImages; currImage++ )
 | |
|         {
 | |
|             for( currPoint = 0; currPoint < numPoints; currPoint++ )
 | |
|             {
 | |
|                 double x,y;
 | |
|                 values_read = fscanf(file,"%lf %lf\n",&x,&y);
 | |
|                 CV_Assert(values_read == 2);
 | |
| 
 | |
|                 (imagePoints+i)->x = x;
 | |
|                 (imagePoints+i)->y = y;
 | |
|                 i++;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Read good data computed before */
 | |
| 
 | |
|         /* Focal lengths */
 | |
|         double goodFcx,goodFcy;
 | |
|         values_read = fscanf(file,"%lf %lf",&goodFcx,&goodFcy);
 | |
|         CV_Assert(values_read == 2);
 | |
| 
 | |
|         /* Principal points */
 | |
|         double goodCx,goodCy;
 | |
|         values_read = fscanf(file,"%lf %lf",&goodCx,&goodCy);
 | |
|         CV_Assert(values_read == 2);
 | |
| 
 | |
|         /* Read distortion */
 | |
| 
 | |
|         values_read = fscanf(file,"%lf",goodDistortion+0); CV_Assert(values_read == 1);
 | |
|         values_read = fscanf(file,"%lf",goodDistortion+1); CV_Assert(values_read == 1);
 | |
|         values_read = fscanf(file,"%lf",goodDistortion+2); CV_Assert(values_read == 1);
 | |
|         values_read = fscanf(file,"%lf",goodDistortion+3); CV_Assert(values_read == 1);
 | |
| 
 | |
|         /* Read good Rot matrices */
 | |
|         for( currImage = 0; currImage < numImages; currImage++ )
 | |
|         {
 | |
|             for( i = 0; i < 3; i++ )
 | |
|                 for( j = 0; j < 3; j++ )
 | |
|                 {
 | |
|                     values_read = fscanf(file, "%lf", goodRotMatrs + currImage * 9 + j * 3 + i);
 | |
|                     CV_Assert(values_read == 1);
 | |
|                 }
 | |
|         }
 | |
| 
 | |
|         /* Read good Trans vectors */
 | |
|         for( currImage = 0; currImage < numImages; currImage++ )
 | |
|         {
 | |
|             for( i = 0; i < 3; i++ )
 | |
|             {
 | |
|                 values_read = fscanf(file, "%lf", goodTransVects + currImage * 3 + i);
 | |
|                 CV_Assert(values_read == 1);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         calibFlags = 0
 | |
|                      // + CV_CALIB_FIX_PRINCIPAL_POINT
 | |
|                      // + CV_CALIB_ZERO_TANGENT_DIST
 | |
|                      // + CV_CALIB_FIX_ASPECT_RATIO
 | |
|                      // + CV_CALIB_USE_INTRINSIC_GUESS
 | |
|                      + CV_CALIB_FIX_K3
 | |
|                      + CV_CALIB_FIX_K4+CV_CALIB_FIX_K5
 | |
|                      + CV_CALIB_FIX_K6
 | |
|                     ;
 | |
|         memset( cameraMatrix, 0, 9*sizeof(cameraMatrix[0]) );
 | |
|         cameraMatrix[0] = cameraMatrix[4] = 807.;
 | |
|         cameraMatrix[2] = (imageSize.width - 1)*0.5;
 | |
|         cameraMatrix[5] = (imageSize.height - 1)*0.5;
 | |
|         cameraMatrix[8] = 1.;
 | |
| 
 | |
|         /* Now we can calibrate camera */
 | |
|         calibrate(  numImages,
 | |
|                     numbers,
 | |
|                     imageSize,
 | |
|                     imagePoints,
 | |
|                     objectPoints,
 | |
|                     distortion,
 | |
|                     cameraMatrix,
 | |
|                     transVects,
 | |
|                     rotMatrs,
 | |
|                     calibFlags );
 | |
| 
 | |
|         /* ---- Reproject points to the image ---- */
 | |
|         for( currImage = 0; currImage < numImages; currImage++ )
 | |
|         {
 | |
|             int nPoints = etalonSize.width * etalonSize.height;
 | |
|             project(  nPoints,
 | |
|                       objectPoints + currImage * nPoints,
 | |
|                       rotMatrs + currImage * 9,
 | |
|                       transVects + currImage * 3,
 | |
|                       cameraMatrix,
 | |
|                       distortion,
 | |
|                       reprojectPoints + currImage * nPoints);
 | |
|         }
 | |
| 
 | |
|         /* ----- Compute reprojection error ----- */
 | |
|         i = 0;
 | |
|         double dx,dy;
 | |
|         double rx,ry;
 | |
|         double meanDx,meanDy;
 | |
|         double maxDx = 0.0;
 | |
|         double maxDy = 0.0;
 | |
| 
 | |
|         meanDx = 0;
 | |
|         meanDy = 0;
 | |
|         for( currImage = 0; currImage < numImages; currImage++ )
 | |
|         {
 | |
|             for( currPoint = 0; currPoint < etalonSize.width * etalonSize.height; currPoint++ )
 | |
|             {
 | |
|                 rx = reprojectPoints[i].x;
 | |
|                 ry = reprojectPoints[i].y;
 | |
|                 dx = rx - imagePoints[i].x;
 | |
|                 dy = ry - imagePoints[i].y;
 | |
| 
 | |
|                 meanDx += dx;
 | |
|                 meanDy += dy;
 | |
| 
 | |
|                 dx = fabs(dx);
 | |
|                 dy = fabs(dy);
 | |
| 
 | |
|                 if( dx > maxDx )
 | |
|                     maxDx = dx;
 | |
| 
 | |
|                 if( dy > maxDy )
 | |
|                     maxDy = dy;
 | |
|                 i++;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         meanDx /= numImages * etalonSize.width * etalonSize.height;
 | |
|         meanDy /= numImages * etalonSize.width * etalonSize.height;
 | |
| 
 | |
|         /* ========= Compare parameters ========= */
 | |
| 
 | |
|         /* ----- Compare focal lengths ----- */
 | |
|         code = compare(cameraMatrix+0,&goodFcx,1,0.1,"fx");
 | |
|         if( code < 0 )
 | |
|             goto _exit_;
 | |
| 
 | |
|         code = compare(cameraMatrix+4,&goodFcy,1,0.1,"fy");
 | |
|         if( code < 0 )
 | |
|             goto _exit_;
 | |
| 
 | |
|         /* ----- Compare principal points ----- */
 | |
|         code = compare(cameraMatrix+2,&goodCx,1,0.1,"cx");
 | |
|         if( code < 0 )
 | |
|             goto _exit_;
 | |
| 
 | |
|         code = compare(cameraMatrix+5,&goodCy,1,0.1,"cy");
 | |
|         if( code < 0 )
 | |
|             goto _exit_;
 | |
| 
 | |
|         /* ----- Compare distortion ----- */
 | |
|         code = compare(distortion,goodDistortion,4,0.1,"[k1,k2,p1,p2]");
 | |
|         if( code < 0 )
 | |
|             goto _exit_;
 | |
| 
 | |
|         /* ----- Compare rot matrixs ----- */
 | |
|         code = compare(rotMatrs,goodRotMatrs, 9*numImages,0.05,"rotation matrices");
 | |
|         if( code < 0 )
 | |
|             goto _exit_;
 | |
| 
 | |
|         /* ----- Compare rot matrixs ----- */
 | |
|         code = compare(transVects,goodTransVects, 3*numImages,0.1,"translation vectors");
 | |
|         if( code < 0 )
 | |
|             goto _exit_;
 | |
| 
 | |
|         if( maxDx > 1.0 )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG,
 | |
|                       "Error in reprojection maxDx=%f > 1.0\n",maxDx);
 | |
|             code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_;
 | |
|         }
 | |
| 
 | |
|         if( maxDy > 1.0 )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG,
 | |
|                       "Error in reprojection maxDy=%f > 1.0\n",maxDy);
 | |
|             code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_;
 | |
|         }
 | |
| 
 | |
|         progress = update_progress( progress, currTest, numTests, 0 );
 | |
| 
 | |
|         cvFree(&imagePoints);
 | |
|         cvFree(&objectPoints);
 | |
|         cvFree(&reprojectPoints);
 | |
|         cvFree(&numbers);
 | |
| 
 | |
|         cvFree(&transVects);
 | |
|         cvFree(&rotMatrs);
 | |
|         cvFree(&goodTransVects);
 | |
|         cvFree(&goodRotMatrs);
 | |
| 
 | |
|         fclose(file);
 | |
|         file = 0;
 | |
|     }
 | |
| 
 | |
| _exit_:
 | |
| 
 | |
|     if( file )
 | |
|         fclose(file);
 | |
| 
 | |
|     if( datafile )
 | |
|         fclose(datafile);
 | |
| 
 | |
|     /* Free all allocated memory */
 | |
|     cvFree(&imagePoints);
 | |
|     cvFree(&objectPoints);
 | |
|     cvFree(&reprojectPoints);
 | |
|     cvFree(&numbers);
 | |
| 
 | |
|     cvFree(&transVects);
 | |
|     cvFree(&rotMatrs);
 | |
|     cvFree(&goodTransVects);
 | |
|     cvFree(&goodRotMatrs);
 | |
| 
 | |
|     if( code < 0 )
 | |
|         ts->set_failed_test_info( code );
 | |
| }
 | |
| 
 | |
| // --------------------------------- CV_CameraCalibrationTest_C --------------------------------------------
 | |
| 
 | |
| class CV_CameraCalibrationTest_C : public CV_CameraCalibrationTest
 | |
| {
 | |
| public:
 | |
|     CV_CameraCalibrationTest_C(){}
 | |
| protected:
 | |
|     virtual void calibrate( int imageCount, int* pointCounts,
 | |
|         CvSize imageSize, CvPoint2D64f* imagePoints, CvPoint3D64f* objectPoints,
 | |
|         double* distortionCoeffs, double* cameraMatrix, double* translationVectors,
 | |
|         double* rotationMatrices, int flags );
 | |
|     virtual void project( int pointCount, CvPoint3D64f* objectPoints,
 | |
|         double* rotationMatrix, double*  translationVector,
 | |
|         double* cameraMatrix, double* distortion, CvPoint2D64f* imagePoints );
 | |
| };
 | |
| 
 | |
| void CV_CameraCalibrationTest_C::calibrate( int imageCount, int* pointCounts,
 | |
|         CvSize imageSize, CvPoint2D64f* imagePoints, CvPoint3D64f* objectPoints,
 | |
|         double* distortionCoeffs, double* cameraMatrix, double* translationVectors,
 | |
|         double* rotationMatrices, int flags )
 | |
| {
 | |
|     int i, total = 0;
 | |
|     for( i = 0; i < imageCount; i++ )
 | |
|         total += pointCounts[i];
 | |
| 
 | |
|     CvMat _objectPoints = cvMat(1, total, CV_64FC3, objectPoints);
 | |
|     CvMat _imagePoints = cvMat(1, total, CV_64FC2, imagePoints);
 | |
|     CvMat _pointCounts = cvMat(1, imageCount, CV_32S, pointCounts);
 | |
|     CvMat _cameraMatrix = cvMat(3, 3, CV_64F, cameraMatrix);
 | |
|     CvMat _distCoeffs = cvMat(4, 1, CV_64F, distortionCoeffs);
 | |
|     CvMat _rotationMatrices = cvMat(imageCount, 9, CV_64F, rotationMatrices);
 | |
|     CvMat _translationVectors = cvMat(imageCount, 3, CV_64F, translationVectors);
 | |
| 
 | |
|     cvCalibrateCamera2(&_objectPoints, &_imagePoints, &_pointCounts, imageSize,
 | |
|                        &_cameraMatrix, &_distCoeffs, &_rotationMatrices, &_translationVectors,
 | |
|                        flags);
 | |
| }
 | |
| 
 | |
| void CV_CameraCalibrationTest_C::project( int pointCount, CvPoint3D64f* objectPoints,
 | |
|         double* rotationMatrix, double*  translationVector,
 | |
|         double* cameraMatrix, double* distortion, CvPoint2D64f* imagePoints )
 | |
| {
 | |
|     CvMat _objectPoints = cvMat(1, pointCount, CV_64FC3, objectPoints);
 | |
|     CvMat _imagePoints = cvMat(1, pointCount, CV_64FC2, imagePoints);
 | |
|     CvMat _cameraMatrix = cvMat(3, 3, CV_64F, cameraMatrix);
 | |
|     CvMat _distCoeffs = cvMat(4, 1, CV_64F, distortion);
 | |
|     CvMat _rotationMatrix = cvMat(3, 3, CV_64F, rotationMatrix);
 | |
|     CvMat _translationVector = cvMat(1, 3, CV_64F, translationVector);
 | |
| 
 | |
|     cvProjectPoints2(&_objectPoints, &_rotationMatrix, &_translationVector, &_cameraMatrix, &_distCoeffs, &_imagePoints);
 | |
| }
 | |
| 
 | |
| // --------------------------------- CV_CameraCalibrationTest_CPP --------------------------------------------
 | |
| 
 | |
| class CV_CameraCalibrationTest_CPP : public CV_CameraCalibrationTest
 | |
| {
 | |
| public:
 | |
|     CV_CameraCalibrationTest_CPP(){}
 | |
| protected:
 | |
|     virtual void calibrate( int imageCount, int* pointCounts,
 | |
|         CvSize imageSize, CvPoint2D64f* imagePoints, CvPoint3D64f* objectPoints,
 | |
|         double* distortionCoeffs, double* cameraMatrix, double* translationVectors,
 | |
|         double* rotationMatrices, int flags );
 | |
|     virtual void project( int pointCount, CvPoint3D64f* objectPoints,
 | |
|         double* rotationMatrix, double*  translationVector,
 | |
|         double* cameraMatrix, double* distortion, CvPoint2D64f* imagePoints );
 | |
| };
 | |
| 
 | |
| void CV_CameraCalibrationTest_CPP::calibrate( int imageCount, int* pointCounts,
 | |
|         CvSize _imageSize, CvPoint2D64f* _imagePoints, CvPoint3D64f* _objectPoints,
 | |
|         double* _distortionCoeffs, double* _cameraMatrix, double* translationVectors,
 | |
|         double* rotationMatrices, int flags )
 | |
| {
 | |
|     vector<vector<Point3f> > objectPoints( imageCount );
 | |
|     vector<vector<Point2f> > imagePoints( imageCount );
 | |
|     Size imageSize = _imageSize;
 | |
|     Mat cameraMatrix, distCoeffs(1,4,CV_64F,Scalar::all(0));
 | |
|     vector<Mat> rvecs, tvecs;
 | |
| 
 | |
|     CvPoint3D64f* op = _objectPoints;
 | |
|     CvPoint2D64f* ip = _imagePoints;
 | |
|     vector<vector<Point3f> >::iterator objectPointsIt = objectPoints.begin();
 | |
|     vector<vector<Point2f> >::iterator imagePointsIt = imagePoints.begin();
 | |
|     for( int i = 0; i < imageCount; ++objectPointsIt, ++imagePointsIt, i++ )
 | |
|     {
 | |
|         int num = pointCounts[i];
 | |
|         objectPointsIt->resize( num );
 | |
|         imagePointsIt->resize( num );
 | |
|         vector<Point3f>::iterator oIt = objectPointsIt->begin();
 | |
|         vector<Point2f>::iterator iIt = imagePointsIt->begin();
 | |
|         for( int j = 0; j < num; ++oIt, ++iIt, j++, op++, ip++)
 | |
|         {
 | |
|             oIt->x = (float)op->x, oIt->y = (float)op->y, oIt->z = (float)op->z;
 | |
|             iIt->x = (float)ip->x, iIt->y = (float)ip->y;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     calibrateCamera( objectPoints,
 | |
|                      imagePoints,
 | |
|                      imageSize,
 | |
|                      cameraMatrix,
 | |
|                      distCoeffs,
 | |
|                      rvecs,
 | |
|                      tvecs,
 | |
|                      flags );
 | |
| 
 | |
|     assert( cameraMatrix.type() == CV_64FC1 );
 | |
|     memcpy( _cameraMatrix, cameraMatrix.ptr(), 9*sizeof(double) );
 | |
| 
 | |
|     assert( cameraMatrix.type() == CV_64FC1 );
 | |
|     memcpy( _distortionCoeffs, distCoeffs.ptr(), 4*sizeof(double) );
 | |
| 
 | |
|     vector<Mat>::iterator rvecsIt = rvecs.begin();
 | |
|     vector<Mat>::iterator tvecsIt = tvecs.begin();
 | |
|     double *rm = rotationMatrices,
 | |
|            *tm = translationVectors;
 | |
|     assert( rvecsIt->type() == CV_64FC1 );
 | |
|     assert( tvecsIt->type() == CV_64FC1 );
 | |
|     for( int i = 0; i < imageCount; ++rvecsIt, ++tvecsIt, i++, rm+=9, tm+=3 )
 | |
|     {
 | |
|         Mat r9( 3, 3, CV_64FC1 );
 | |
|         Rodrigues( *rvecsIt, r9 );
 | |
|         memcpy( rm, r9.ptr(), 9*sizeof(double) );
 | |
|         memcpy( tm, tvecsIt->ptr(), 3*sizeof(double) );
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CV_CameraCalibrationTest_CPP::project( int pointCount, CvPoint3D64f* _objectPoints,
 | |
|         double* rotationMatrix, double*  translationVector,
 | |
|         double* _cameraMatrix, double* distortion, CvPoint2D64f* _imagePoints )
 | |
| {
 | |
|     Mat objectPoints( pointCount, 3, CV_64FC1, _objectPoints );
 | |
|     Mat rmat( 3, 3, CV_64FC1, rotationMatrix ),
 | |
|         rvec( 1, 3, CV_64FC1 ),
 | |
|         tvec( 1, 3, CV_64FC1, translationVector );
 | |
|     Mat cameraMatrix( 3, 3, CV_64FC1, _cameraMatrix );
 | |
|     Mat distCoeffs( 1, 4, CV_64FC1, distortion );
 | |
|     vector<Point2f> imagePoints;
 | |
|     Rodrigues( rmat, rvec );
 | |
| 
 | |
|     objectPoints.convertTo( objectPoints, CV_32FC1 );
 | |
|     projectPoints( objectPoints, rvec, tvec,
 | |
|                    cameraMatrix, distCoeffs, imagePoints );
 | |
|     vector<Point2f>::const_iterator it = imagePoints.begin();
 | |
|     for( int i = 0; it != imagePoints.end(); ++it, i++ )
 | |
|     {
 | |
|         _imagePoints[i] = cvPoint2D64f( it->x, it->y );
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------- CV_CalibrationMatrixValuesTest --------------------------------
 | |
| 
 | |
| class CV_CalibrationMatrixValuesTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     CV_CalibrationMatrixValuesTest() {}
 | |
| protected:
 | |
|     void run(int);
 | |
|     virtual void calibMatrixValues( const Mat& cameraMatrix, Size imageSize,
 | |
|         double apertureWidth, double apertureHeight, double& fovx, double& fovy, double& focalLength,
 | |
|         Point2d& principalPoint, double& aspectRatio ) = 0;
 | |
| };
 | |
| 
 | |
| void CV_CalibrationMatrixValuesTest::run(int)
 | |
| {
 | |
|     int code = cvtest::TS::OK;
 | |
|     const double fcMinVal = 1e-5;
 | |
|     const double fcMaxVal = 1000;
 | |
|     const double apertureMaxVal = 0.01;
 | |
| 
 | |
|     RNG rng = ts->get_rng();
 | |
| 
 | |
|     double fx, fy, cx, cy, nx, ny;
 | |
|     Mat cameraMatrix( 3, 3, CV_64FC1 );
 | |
|     cameraMatrix.setTo( Scalar(0) );
 | |
|     fx = cameraMatrix.at<double>(0,0) = rng.uniform( fcMinVal, fcMaxVal );
 | |
|     fy = cameraMatrix.at<double>(1,1) = rng.uniform( fcMinVal, fcMaxVal );
 | |
|     cx = cameraMatrix.at<double>(0,2) = rng.uniform( fcMinVal, fcMaxVal );
 | |
|     cy = cameraMatrix.at<double>(1,2) = rng.uniform( fcMinVal, fcMaxVal );
 | |
|     cameraMatrix.at<double>(2,2) = 1;
 | |
| 
 | |
|     Size imageSize( 600, 400 );
 | |
| 
 | |
|     double apertureWidth = (double)rng * apertureMaxVal,
 | |
|            apertureHeight = (double)rng * apertureMaxVal;
 | |
| 
 | |
|     double fovx, fovy, focalLength, aspectRatio,
 | |
|            goodFovx, goodFovy, goodFocalLength, goodAspectRatio;
 | |
|     Point2d principalPoint, goodPrincipalPoint;
 | |
| 
 | |
| 
 | |
|     calibMatrixValues( cameraMatrix, imageSize, apertureWidth, apertureHeight,
 | |
|         fovx, fovy, focalLength, principalPoint, aspectRatio );
 | |
| 
 | |
|     // calculate calibration matrix values
 | |
|     goodAspectRatio = fy / fx;
 | |
| 
 | |
|     if( apertureWidth != 0.0 && apertureHeight != 0.0 )
 | |
|     {
 | |
|         nx = imageSize.width / apertureWidth;
 | |
|         ny = imageSize.height / apertureHeight;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         nx = 1.0;
 | |
|         ny = goodAspectRatio;
 | |
|     }
 | |
| 
 | |
|     goodFovx = 2 * atan( imageSize.width / (2 * fx)) * 180.0 / CV_PI;
 | |
|     goodFovy = 2 * atan( imageSize.height / (2 * fy)) * 180.0 / CV_PI;
 | |
| 
 | |
|     goodFocalLength = fx / nx;
 | |
| 
 | |
|     goodPrincipalPoint.x = cx / nx;
 | |
|     goodPrincipalPoint.y = cy / ny;
 | |
| 
 | |
|     // check results
 | |
|     if( fabs(fovx - goodFovx) > FLT_EPSILON )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad fovx (real=%f, good = %f\n", fovx, goodFovx );
 | |
|         code = cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|         goto _exit_;
 | |
|     }
 | |
|     if( fabs(fovy - goodFovy) > FLT_EPSILON )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad fovy (real=%f, good = %f\n", fovy, goodFovy );
 | |
|         code = cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|         goto _exit_;
 | |
|     }
 | |
|     if( fabs(focalLength - goodFocalLength) > FLT_EPSILON )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad focalLength (real=%f, good = %f\n", focalLength, goodFocalLength );
 | |
|         code = cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|         goto _exit_;
 | |
|     }
 | |
|     if( fabs(aspectRatio - goodAspectRatio) > FLT_EPSILON )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad aspectRatio (real=%f, good = %f\n", aspectRatio, goodAspectRatio );
 | |
|         code = cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|         goto _exit_;
 | |
|     }
 | |
|     if( norm( principalPoint - goodPrincipalPoint ) > FLT_EPSILON )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad principalPoint\n" );
 | |
|         code = cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|         goto _exit_;
 | |
|     }
 | |
| 
 | |
| _exit_:
 | |
|     RNG& _rng = ts->get_rng();
 | |
|     _rng = rng;
 | |
|     ts->set_failed_test_info( code );
 | |
| }
 | |
| 
 | |
| //----------------------------------------- CV_CalibrationMatrixValuesTest_C --------------------------------
 | |
| 
 | |
| class CV_CalibrationMatrixValuesTest_C : public CV_CalibrationMatrixValuesTest
 | |
| {
 | |
| public:
 | |
|     CV_CalibrationMatrixValuesTest_C(){}
 | |
| protected:
 | |
|     virtual void calibMatrixValues( const Mat& cameraMatrix, Size imageSize,
 | |
|         double apertureWidth, double apertureHeight, double& fovx, double& fovy, double& focalLength,
 | |
|         Point2d& principalPoint, double& aspectRatio );
 | |
| };
 | |
| 
 | |
| void CV_CalibrationMatrixValuesTest_C::calibMatrixValues( const Mat& _cameraMatrix, Size imageSize,
 | |
|                                                double apertureWidth, double apertureHeight,
 | |
|                                                double& fovx, double& fovy, double& focalLength,
 | |
|                                                Point2d& principalPoint, double& aspectRatio )
 | |
| {
 | |
|     CvMat cameraMatrix = _cameraMatrix;
 | |
|     CvPoint2D64f pp;
 | |
|     cvCalibrationMatrixValues( &cameraMatrix, imageSize, apertureWidth, apertureHeight,
 | |
|         &fovx, &fovy, &focalLength, &pp, &aspectRatio );
 | |
|     principalPoint.x = pp.x;
 | |
|     principalPoint.y = pp.y;
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------- CV_CalibrationMatrixValuesTest_CPP --------------------------------
 | |
| 
 | |
| class CV_CalibrationMatrixValuesTest_CPP : public CV_CalibrationMatrixValuesTest
 | |
| {
 | |
| public:
 | |
|     CV_CalibrationMatrixValuesTest_CPP() {}
 | |
| protected:
 | |
|     virtual void calibMatrixValues( const Mat& cameraMatrix, Size imageSize,
 | |
|         double apertureWidth, double apertureHeight, double& fovx, double& fovy, double& focalLength,
 | |
|         Point2d& principalPoint, double& aspectRatio );
 | |
| };
 | |
| 
 | |
| void CV_CalibrationMatrixValuesTest_CPP::calibMatrixValues( const Mat& cameraMatrix, Size imageSize,
 | |
|                                                          double apertureWidth, double apertureHeight,
 | |
|                                                          double& fovx, double& fovy, double& focalLength,
 | |
|                                                          Point2d& principalPoint, double& aspectRatio )
 | |
| {
 | |
|     calibrationMatrixValues( cameraMatrix, imageSize, apertureWidth, apertureHeight,
 | |
|         fovx, fovy, focalLength, principalPoint, aspectRatio );
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------- CV_ProjectPointsTest --------------------------------
 | |
| void calcdfdx( const vector<vector<Point2f> >& leftF, const vector<vector<Point2f> >& rightF, double eps, Mat& dfdx )
 | |
| {
 | |
|     const int fdim = 2;
 | |
|     CV_Assert( !leftF.empty() && !rightF.empty() && !leftF[0].empty() && !rightF[0].empty() );
 | |
|     CV_Assert( leftF[0].size() ==  rightF[0].size() );
 | |
|     CV_Assert( fabs(eps) > std::numeric_limits<double>::epsilon() );
 | |
|     int fcount = (int)leftF[0].size(), xdim = (int)leftF.size();
 | |
| 
 | |
|     dfdx.create( fcount*fdim, xdim, CV_64FC1 );
 | |
| 
 | |
|     vector<vector<Point2f> >::const_iterator arrLeftIt = leftF.begin();
 | |
|     vector<vector<Point2f> >::const_iterator arrRightIt = rightF.begin();
 | |
|     for( int xi = 0; xi < xdim; xi++, ++arrLeftIt, ++arrRightIt )
 | |
|     {
 | |
|         CV_Assert( (int)arrLeftIt->size() ==  fcount );
 | |
|         CV_Assert( (int)arrRightIt->size() ==  fcount );
 | |
|         vector<Point2f>::const_iterator lIt = arrLeftIt->begin();
 | |
|         vector<Point2f>::const_iterator rIt = arrRightIt->begin();
 | |
|         for( int fi = 0; fi < dfdx.rows; fi+=fdim, ++lIt, ++rIt )
 | |
|         {
 | |
|             dfdx.at<double>(fi, xi )   = 0.5 * ((double)(rIt->x - lIt->x)) / eps;
 | |
|             dfdx.at<double>(fi+1, xi ) = 0.5 * ((double)(rIt->y - lIt->y)) / eps;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| class CV_ProjectPointsTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     CV_ProjectPointsTest() {}
 | |
| protected:
 | |
|     void run(int);
 | |
|     virtual void project( const Mat& objectPoints,
 | |
|         const Mat& rvec, const Mat& tvec,
 | |
|         const Mat& cameraMatrix,
 | |
|         const Mat& distCoeffs,
 | |
|         vector<Point2f>& imagePoints,
 | |
|         Mat& dpdrot, Mat& dpdt, Mat& dpdf,
 | |
|         Mat& dpdc, Mat& dpddist,
 | |
|         double aspectRatio=0 ) = 0;
 | |
| };
 | |
| 
 | |
| void CV_ProjectPointsTest::run(int)
 | |
| {
 | |
|     //typedef float matType;
 | |
| 
 | |
|     int code = cvtest::TS::OK;
 | |
|     const int pointCount = 100;
 | |
| 
 | |
|     const float zMinVal = 10.0f, zMaxVal = 100.0f,
 | |
|                 rMinVal = -0.3f, rMaxVal = 0.3f,
 | |
|                 tMinVal = -2.0f, tMaxVal = 2.0f;
 | |
| 
 | |
|     const float imgPointErr = 1e-3f,
 | |
|                 dEps = 1e-3f;
 | |
| 
 | |
|     double err;
 | |
| 
 | |
|     Size imgSize( 600, 800 );
 | |
|     Mat_<float> objPoints( pointCount, 3), rvec( 1, 3), rmat, tvec( 1, 3 ), cameraMatrix( 3, 3 ), distCoeffs( 1, 4 ),
 | |
|       leftRvec, rightRvec, leftTvec, rightTvec, leftCameraMatrix, rightCameraMatrix, leftDistCoeffs, rightDistCoeffs;
 | |
| 
 | |
|     RNG rng = ts->get_rng();
 | |
| 
 | |
|     // generate data
 | |
|     cameraMatrix << 300.f,  0.f,    imgSize.width/2.f,
 | |
|                     0.f,    300.f,  imgSize.height/2.f,
 | |
|                     0.f,    0.f,    1.f;
 | |
|     distCoeffs << 0.1, 0.01, 0.001, 0.001;
 | |
| 
 | |
|     rvec(0,0) = rng.uniform( rMinVal, rMaxVal );
 | |
|     rvec(0,1) = rng.uniform( rMinVal, rMaxVal );
 | |
|     rvec(0,2) = rng.uniform( rMinVal, rMaxVal );
 | |
|     Rodrigues( rvec, rmat );
 | |
| 
 | |
|     tvec(0,0) = rng.uniform( tMinVal, tMaxVal );
 | |
|     tvec(0,1) = rng.uniform( tMinVal, tMaxVal );
 | |
|     tvec(0,2) = rng.uniform( tMinVal, tMaxVal );
 | |
| 
 | |
|     for( int y = 0; y < objPoints.rows; y++ )
 | |
|     {
 | |
|         Mat point(1, 3, CV_32FC1, objPoints.ptr(y) );
 | |
|         float z = rng.uniform( zMinVal, zMaxVal );
 | |
|         point.at<float>(0,2) = z;
 | |
|         point.at<float>(0,0) = (rng.uniform(2.f,(float)(imgSize.width-2)) - cameraMatrix(0,2)) / cameraMatrix(0,0) * z;
 | |
|         point.at<float>(0,1) = (rng.uniform(2.f,(float)(imgSize.height-2)) - cameraMatrix(1,2)) / cameraMatrix(1,1) * z;
 | |
|         point = (point - tvec) * rmat;
 | |
|     }
 | |
| 
 | |
|     vector<Point2f> imgPoints;
 | |
|     vector<vector<Point2f> > leftImgPoints;
 | |
|     vector<vector<Point2f> > rightImgPoints;
 | |
|     Mat dpdrot, dpdt, dpdf, dpdc, dpddist,
 | |
|         valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist;
 | |
| 
 | |
|     project( objPoints, rvec, tvec, cameraMatrix, distCoeffs,
 | |
|         imgPoints, dpdrot, dpdt, dpdf, dpdc, dpddist, 0 );
 | |
| 
 | |
|     // calculate and check image points
 | |
|     assert( (int)imgPoints.size() == pointCount );
 | |
|     vector<Point2f>::const_iterator it = imgPoints.begin();
 | |
|     for( int i = 0; i < pointCount; i++, ++it )
 | |
|     {
 | |
|         Point3d p( objPoints(i,0), objPoints(i,1), objPoints(i,2) );
 | |
|         double z = p.x*rmat(2,0) + p.y*rmat(2,1) + p.z*rmat(2,2) + tvec(0,2),
 | |
|                x = (p.x*rmat(0,0) + p.y*rmat(0,1) + p.z*rmat(0,2) + tvec(0,0)) / z,
 | |
|                y = (p.x*rmat(1,0) + p.y*rmat(1,1) + p.z*rmat(1,2) + tvec(0,1)) / z,
 | |
|                r2 = x*x + y*y,
 | |
|                r4 = r2*r2;
 | |
|         Point2f validImgPoint;
 | |
|         double a1 = 2*x*y,
 | |
|                a2 = r2 + 2*x*x,
 | |
|                a3 = r2 + 2*y*y,
 | |
|                cdist = 1+distCoeffs(0,0)*r2+distCoeffs(0,1)*r4;
 | |
|         validImgPoint.x = static_cast<float>((double)cameraMatrix(0,0)*(x*cdist + (double)distCoeffs(0,2)*a1 + (double)distCoeffs(0,3)*a2)
 | |
|             + (double)cameraMatrix(0,2));
 | |
|         validImgPoint.y = static_cast<float>((double)cameraMatrix(1,1)*(y*cdist + (double)distCoeffs(0,2)*a3 + distCoeffs(0,3)*a1)
 | |
|             + (double)cameraMatrix(1,2));
 | |
| 
 | |
|         if( fabs(it->x - validImgPoint.x) > imgPointErr ||
 | |
|             fabs(it->y - validImgPoint.y) > imgPointErr )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "bad image point\n" );
 | |
|             code = cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|             goto _exit_;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // check derivatives
 | |
|     // 1. rotation
 | |
|     leftImgPoints.resize(3);
 | |
|     rightImgPoints.resize(3);
 | |
|     for( int i = 0; i < 3; i++ )
 | |
|     {
 | |
|         rvec.copyTo( leftRvec ); leftRvec(0,i) -= dEps;
 | |
|         project( objPoints, leftRvec, tvec, cameraMatrix, distCoeffs,
 | |
|             leftImgPoints[i], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 );
 | |
|         rvec.copyTo( rightRvec ); rightRvec(0,i) += dEps;
 | |
|         project( objPoints, rightRvec, tvec, cameraMatrix, distCoeffs,
 | |
|             rightImgPoints[i], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 );
 | |
|     }
 | |
|     calcdfdx( leftImgPoints, rightImgPoints, dEps, valDpdrot );
 | |
|     err = cvtest::norm( dpdrot, valDpdrot, NORM_INF );
 | |
|     if( err > 3 )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad dpdrot: too big difference = %g\n", err );
 | |
|         code = cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|     }
 | |
| 
 | |
|     // 2. translation
 | |
|     for( int i = 0; i < 3; i++ )
 | |
|     {
 | |
|         tvec.copyTo( leftTvec ); leftTvec(0,i) -= dEps;
 | |
|         project( objPoints, rvec, leftTvec, cameraMatrix, distCoeffs,
 | |
|             leftImgPoints[i], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 );
 | |
|         tvec.copyTo( rightTvec ); rightTvec(0,i) += dEps;
 | |
|         project( objPoints, rvec, rightTvec, cameraMatrix, distCoeffs,
 | |
|             rightImgPoints[i], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 );
 | |
|     }
 | |
|     calcdfdx( leftImgPoints, rightImgPoints, dEps, valDpdt );
 | |
|     if( cvtest::norm( dpdt, valDpdt, NORM_INF ) > 0.2 )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad dpdtvec\n" );
 | |
|         code = cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|     }
 | |
| 
 | |
|     // 3. camera matrix
 | |
|     // 3.1. focus
 | |
|     leftImgPoints.resize(2);
 | |
|     rightImgPoints.resize(2);
 | |
|     cameraMatrix.copyTo( leftCameraMatrix ); leftCameraMatrix(0,0) -= dEps;
 | |
|     project( objPoints, rvec, tvec, leftCameraMatrix, distCoeffs,
 | |
|         leftImgPoints[0], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 );
 | |
|     cameraMatrix.copyTo( leftCameraMatrix ); leftCameraMatrix(1,1) -= dEps;
 | |
|     project( objPoints, rvec, tvec, leftCameraMatrix, distCoeffs,
 | |
|         leftImgPoints[1], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 );
 | |
|     cameraMatrix.copyTo( rightCameraMatrix ); rightCameraMatrix(0,0) += dEps;
 | |
|     project( objPoints, rvec, tvec, rightCameraMatrix, distCoeffs,
 | |
|         rightImgPoints[0], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 );
 | |
|     cameraMatrix.copyTo( rightCameraMatrix ); rightCameraMatrix(1,1) += dEps;
 | |
|     project( objPoints, rvec, tvec, rightCameraMatrix, distCoeffs,
 | |
|         rightImgPoints[1], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 );
 | |
|     calcdfdx( leftImgPoints, rightImgPoints, dEps, valDpdf );
 | |
|     if ( cvtest::norm( dpdf, valDpdf, NORM_L2 ) > 0.2 )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad dpdf\n" );
 | |
|         code = cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|     }
 | |
|     // 3.2. principal point
 | |
|     leftImgPoints.resize(2);
 | |
|     rightImgPoints.resize(2);
 | |
|     cameraMatrix.copyTo( leftCameraMatrix ); leftCameraMatrix(0,2) -= dEps;
 | |
|     project( objPoints, rvec, tvec, leftCameraMatrix, distCoeffs,
 | |
|         leftImgPoints[0], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 );
 | |
|     cameraMatrix.copyTo( leftCameraMatrix ); leftCameraMatrix(1,2) -= dEps;
 | |
|     project( objPoints, rvec, tvec, leftCameraMatrix, distCoeffs,
 | |
|         leftImgPoints[1], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 );
 | |
|     cameraMatrix.copyTo( rightCameraMatrix ); rightCameraMatrix(0,2) += dEps;
 | |
|     project( objPoints, rvec, tvec, rightCameraMatrix, distCoeffs,
 | |
|         rightImgPoints[0], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 );
 | |
|     cameraMatrix.copyTo( rightCameraMatrix ); rightCameraMatrix(1,2) += dEps;
 | |
|     project( objPoints, rvec, tvec, rightCameraMatrix, distCoeffs,
 | |
|         rightImgPoints[1], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 );
 | |
|     calcdfdx( leftImgPoints, rightImgPoints, dEps, valDpdc );
 | |
|     if ( cvtest::norm( dpdc, valDpdc, NORM_L2 ) > 0.2 )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad dpdc\n" );
 | |
|         code = cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|     }
 | |
| 
 | |
|     // 4. distortion
 | |
|     leftImgPoints.resize(distCoeffs.cols);
 | |
|     rightImgPoints.resize(distCoeffs.cols);
 | |
|     for( int i = 0; i < distCoeffs.cols; i++ )
 | |
|     {
 | |
|         distCoeffs.copyTo( leftDistCoeffs ); leftDistCoeffs(0,i) -= dEps;
 | |
|         project( objPoints, rvec, tvec, cameraMatrix, leftDistCoeffs,
 | |
|             leftImgPoints[i], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 );
 | |
|         distCoeffs.copyTo( rightDistCoeffs ); rightDistCoeffs(0,i) += dEps;
 | |
|         project( objPoints, rvec, tvec, cameraMatrix, rightDistCoeffs,
 | |
|             rightImgPoints[i], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 );
 | |
|     }
 | |
|     calcdfdx( leftImgPoints, rightImgPoints, dEps, valDpddist );
 | |
|     if( cvtest::norm( dpddist, valDpddist, NORM_L2 ) > 0.3 )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad dpddist\n" );
 | |
|         code = cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|     }
 | |
| 
 | |
| _exit_:
 | |
|     RNG& _rng = ts->get_rng();
 | |
|     _rng = rng;
 | |
|     ts->set_failed_test_info( code );
 | |
| }
 | |
| 
 | |
| //----------------------------------------- CV_ProjectPointsTest_C --------------------------------
 | |
| class CV_ProjectPointsTest_C : public CV_ProjectPointsTest
 | |
| {
 | |
| public:
 | |
|     CV_ProjectPointsTest_C() {}
 | |
| protected:
 | |
|     virtual void project( const Mat& objectPoints,
 | |
|         const Mat& rvec, const Mat& tvec,
 | |
|         const Mat& cameraMatrix,
 | |
|         const Mat& distCoeffs,
 | |
|         vector<Point2f>& imagePoints,
 | |
|         Mat& dpdrot, Mat& dpdt, Mat& dpdf,
 | |
|         Mat& dpdc, Mat& dpddist,
 | |
|         double aspectRatio=0 );
 | |
| };
 | |
| 
 | |
| void CV_ProjectPointsTest_C::project( const Mat& opoints, const Mat& rvec, const Mat& tvec,
 | |
|                                        const Mat& cameraMatrix, const Mat& distCoeffs, vector<Point2f>& ipoints,
 | |
|                                        Mat& dpdrot, Mat& dpdt, Mat& dpdf, Mat& dpdc, Mat& dpddist, double aspectRatio)
 | |
| {
 | |
|     int npoints = opoints.cols*opoints.rows*opoints.channels()/3;
 | |
|     ipoints.resize(npoints);
 | |
|     dpdrot.create(npoints*2, 3, CV_64F);
 | |
|     dpdt.create(npoints*2, 3, CV_64F);
 | |
|     dpdf.create(npoints*2, 2, CV_64F);
 | |
|     dpdc.create(npoints*2, 2, CV_64F);
 | |
|     dpddist.create(npoints*2, distCoeffs.rows + distCoeffs.cols - 1, CV_64F);
 | |
|     CvMat _objectPoints = opoints, _imagePoints = Mat(ipoints);
 | |
|     CvMat _rvec = rvec, _tvec = tvec, _cameraMatrix = cameraMatrix, _distCoeffs = distCoeffs;
 | |
|     CvMat _dpdrot = dpdrot, _dpdt = dpdt, _dpdf = dpdf, _dpdc = dpdc, _dpddist = dpddist;
 | |
| 
 | |
|     cvProjectPoints2( &_objectPoints, &_rvec, &_tvec, &_cameraMatrix, &_distCoeffs,
 | |
|                       &_imagePoints, &_dpdrot, &_dpdt, &_dpdf, &_dpdc, &_dpddist, aspectRatio );
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------- CV_ProjectPointsTest_CPP --------------------------------
 | |
| class CV_ProjectPointsTest_CPP : public CV_ProjectPointsTest
 | |
| {
 | |
| public:
 | |
|     CV_ProjectPointsTest_CPP() {}
 | |
| protected:
 | |
|     virtual void project( const Mat& objectPoints,
 | |
|         const Mat& rvec, const Mat& tvec,
 | |
|         const Mat& cameraMatrix,
 | |
|         const Mat& distCoeffs,
 | |
|         vector<Point2f>& imagePoints,
 | |
|         Mat& dpdrot, Mat& dpdt, Mat& dpdf,
 | |
|         Mat& dpdc, Mat& dpddist,
 | |
|         double aspectRatio=0 );
 | |
| };
 | |
| 
 | |
| void CV_ProjectPointsTest_CPP::project( const Mat& objectPoints, const Mat& rvec, const Mat& tvec,
 | |
|                                        const Mat& cameraMatrix, const Mat& distCoeffs, vector<Point2f>& imagePoints,
 | |
|                                        Mat& dpdrot, Mat& dpdt, Mat& dpdf, Mat& dpdc, Mat& dpddist, double aspectRatio)
 | |
| {
 | |
|     Mat J;
 | |
|     projectPoints( objectPoints, rvec, tvec, cameraMatrix, distCoeffs, imagePoints, J, aspectRatio);
 | |
|     J.colRange(0, 3).copyTo(dpdrot);
 | |
|     J.colRange(3, 6).copyTo(dpdt);
 | |
|     J.colRange(6, 8).copyTo(dpdf);
 | |
|     J.colRange(8, 10).copyTo(dpdc);
 | |
|     J.colRange(10, J.cols).copyTo(dpddist);
 | |
| }
 | |
| 
 | |
| ///////////////////////////////// Stereo Calibration /////////////////////////////////////
 | |
| 
 | |
| class CV_StereoCalibrationTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     CV_StereoCalibrationTest();
 | |
|     ~CV_StereoCalibrationTest();
 | |
|     void clear();
 | |
| protected:
 | |
|     bool checkPandROI( int test_case_idx,
 | |
|         const Mat& M, const Mat& D, const Mat& R,
 | |
|         const Mat& P, Size imgsize, Rect roi );
 | |
| 
 | |
|     // covers of tested functions
 | |
|     virtual double calibrateStereoCamera( const vector<vector<Point3f> >& objectPoints,
 | |
|         const vector<vector<Point2f> >& imagePoints1,
 | |
|         const vector<vector<Point2f> >& imagePoints2,
 | |
|         Mat& cameraMatrix1, Mat& distCoeffs1,
 | |
|         Mat& cameraMatrix2, Mat& distCoeffs2,
 | |
|         Size imageSize, Mat& R, Mat& T,
 | |
|         Mat& E, Mat& F, TermCriteria criteria, int flags ) = 0;
 | |
|     virtual void rectify( const Mat& cameraMatrix1, const Mat& distCoeffs1,
 | |
|         const Mat& cameraMatrix2, const Mat& distCoeffs2,
 | |
|         Size imageSize, const Mat& R, const Mat& T,
 | |
|         Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q,
 | |
|         double alpha, Size newImageSize,
 | |
|         Rect* validPixROI1, Rect* validPixROI2, int flags ) = 0;
 | |
|     virtual bool rectifyUncalibrated( const Mat& points1,
 | |
|         const Mat& points2, const Mat& F, Size imgSize,
 | |
|         Mat& H1, Mat& H2, double threshold=5 ) = 0;
 | |
|     virtual void triangulate( const Mat& P1, const Mat& P2,
 | |
|         const Mat &points1, const Mat &points2,
 | |
|         Mat &points4D ) = 0;
 | |
|     virtual void correct( const Mat& F,
 | |
|         const Mat &points1, const Mat &points2,
 | |
|         Mat &newPoints1, Mat &newPoints2 ) = 0;
 | |
| 
 | |
|     void run(int);
 | |
| };
 | |
| 
 | |
| 
 | |
| CV_StereoCalibrationTest::CV_StereoCalibrationTest()
 | |
| {
 | |
| }
 | |
| 
 | |
| 
 | |
| CV_StereoCalibrationTest::~CV_StereoCalibrationTest()
 | |
| {
 | |
|     clear();
 | |
| }
 | |
| 
 | |
| void CV_StereoCalibrationTest::clear()
 | |
| {
 | |
|     cvtest::BaseTest::clear();
 | |
| }
 | |
| 
 | |
| bool CV_StereoCalibrationTest::checkPandROI( int test_case_idx, const Mat& M, const Mat& D, const Mat& R,
 | |
|                                             const Mat& P, Size imgsize, Rect roi )
 | |
| {
 | |
|     const double eps = 0.05;
 | |
|     const int N = 21;
 | |
|     int x, y, k;
 | |
|     vector<Point2f> pts, upts;
 | |
| 
 | |
|     // step 1. check that all the original points belong to the destination image
 | |
|     for( y = 0; y < N; y++ )
 | |
|         for( x = 0; x < N; x++ )
 | |
|             pts.push_back(Point2f((float)x*imgsize.width/(N-1), (float)y*imgsize.height/(N-1)));
 | |
| 
 | |
|     undistortPoints(Mat(pts), upts, M, D, R, P );
 | |
|     for( k = 0; k < N*N; k++ )
 | |
|         if( upts[k].x < -imgsize.width*eps || upts[k].x > imgsize.width*(1+eps) ||
 | |
|             upts[k].y < -imgsize.height*eps || upts[k].y > imgsize.height*(1+eps) )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Test #%d. The point (%g, %g) was mapped to (%g, %g) which is out of image\n",
 | |
|                 test_case_idx, pts[k].x, pts[k].y, upts[k].x, upts[k].y);
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         // step 2. check that all the points inside ROI belong to the original source image
 | |
|         Mat temp(imgsize, CV_8U), utemp, map1, map2;
 | |
|         temp = Scalar::all(1);
 | |
|         initUndistortRectifyMap(M, D, R, P, imgsize, CV_16SC2, map1, map2);
 | |
|         remap(temp, utemp, map1, map2, INTER_LINEAR);
 | |
| 
 | |
|         if(roi.x < 0 || roi.y < 0 || roi.x + roi.width > imgsize.width || roi.y + roi.height > imgsize.height)
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Test #%d. The ROI=(%d, %d, %d, %d) is outside of the imge rectangle\n",
 | |
|                 test_case_idx, roi.x, roi.y, roi.width, roi.height);
 | |
|             return false;
 | |
|         }
 | |
|         double s = sum(utemp(roi))[0];
 | |
|         if( s > roi.area() || roi.area() - s > roi.area()*(1-eps) )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Test #%d. The ratio of black pixels inside the valid ROI (~%g%%) is too large\n",
 | |
|                 test_case_idx, s*100./roi.area());
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
| }
 | |
| 
 | |
| void CV_StereoCalibrationTest::run( int )
 | |
| {
 | |
|     const int ntests = 1;
 | |
|     const double maxReprojErr = 2;
 | |
|     const double maxScanlineDistErr_c = 3;
 | |
|     const double maxScanlineDistErr_uc = 4;
 | |
|     FILE* f = 0;
 | |
| 
 | |
|     for(int testcase = 1; testcase <= ntests; testcase++)
 | |
|     {
 | |
|         cv::String filepath;
 | |
|         char buf[1000];
 | |
|         filepath = cv::format("%scv/stereo/case%d/stereo_calib.txt", ts->get_data_path().c_str(), testcase );
 | |
|         f = fopen(filepath.c_str(), "rt");
 | |
|         Size patternSize;
 | |
|         vector<string> imglist;
 | |
| 
 | |
|         if( !f || !fgets(buf, sizeof(buf)-3, f) || sscanf(buf, "%d%d", &patternSize.width, &patternSize.height) != 2 )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "The file %s can not be opened or has invalid content\n", filepath.c_str() );
 | |
|             ts->set_failed_test_info( f ? cvtest::TS::FAIL_INVALID_TEST_DATA : cvtest::TS::FAIL_MISSING_TEST_DATA );
 | |
|             fclose(f);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         for(;;)
 | |
|         {
 | |
|             if( !fgets( buf, sizeof(buf)-3, f ))
 | |
|                 break;
 | |
|             size_t len = strlen(buf);
 | |
|             while( len > 0 && isspace(buf[len-1]))
 | |
|                 buf[--len] = '\0';
 | |
|             if( buf[0] == '#')
 | |
|                 continue;
 | |
|             filepath = cv::format("%scv/stereo/case%d/%s", ts->get_data_path().c_str(), testcase, buf );
 | |
|             imglist.push_back(string(filepath));
 | |
|         }
 | |
|         fclose(f);
 | |
| 
 | |
|         if( imglist.size() == 0 || imglist.size() % 2 != 0 )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "The number of images is 0 or an odd number in the case #%d\n", testcase );
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         int nframes = (int)(imglist.size()/2);
 | |
|         int npoints = patternSize.width*patternSize.height;
 | |
|         vector<vector<Point3f> > objpt(nframes);
 | |
|         vector<vector<Point2f> > imgpt1(nframes);
 | |
|         vector<vector<Point2f> > imgpt2(nframes);
 | |
|         Size imgsize;
 | |
|         int total = 0;
 | |
| 
 | |
|         for( int i = 0; i < nframes; i++ )
 | |
|         {
 | |
|             Mat left = imread(imglist[i*2]);
 | |
|             Mat right = imread(imglist[i*2+1]);
 | |
|             if(left.empty() || right.empty())
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "Can not load images %s and %s, testcase %d\n",
 | |
|                     imglist[i*2].c_str(), imglist[i*2+1].c_str(), testcase );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA );
 | |
|                 return;
 | |
|             }
 | |
|             imgsize = left.size();
 | |
|             bool found1 = findChessboardCorners(left, patternSize, imgpt1[i]);
 | |
|             bool found2 = findChessboardCorners(right, patternSize, imgpt2[i]);
 | |
|             if(!found1 || !found2)
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "The function could not detect boards on the images %s and %s, testcase %d\n",
 | |
|                     imglist[i*2].c_str(), imglist[i*2+1].c_str(), testcase );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|                 return;
 | |
|             }
 | |
|             total += (int)imgpt1[i].size();
 | |
|             for( int j = 0; j < npoints; j++ )
 | |
|                 objpt[i].push_back(Point3f((float)(j%patternSize.width), (float)(j/patternSize.width), 0.f));
 | |
|         }
 | |
| 
 | |
|         // rectify (calibrated)
 | |
|         Mat M1 = Mat::eye(3,3,CV_64F), M2 = Mat::eye(3,3,CV_64F), D1(5,1,CV_64F), D2(5,1,CV_64F), R, T, E, F;
 | |
|         M1.at<double>(0,2) = M2.at<double>(0,2)=(imgsize.width-1)*0.5;
 | |
|         M1.at<double>(1,2) = M2.at<double>(1,2)=(imgsize.height-1)*0.5;
 | |
|         D1 = Scalar::all(0);
 | |
|         D2 = Scalar::all(0);
 | |
|         double err = calibrateStereoCamera(objpt, imgpt1, imgpt2, M1, D1, M2, D2, imgsize, R, T, E, F,
 | |
|             TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 1e-6),
 | |
|             CV_CALIB_SAME_FOCAL_LENGTH
 | |
|             //+ CV_CALIB_FIX_ASPECT_RATIO
 | |
|             + CV_CALIB_FIX_PRINCIPAL_POINT
 | |
|             + CV_CALIB_ZERO_TANGENT_DIST
 | |
|             + CV_CALIB_FIX_K3
 | |
|             + CV_CALIB_FIX_K4 + CV_CALIB_FIX_K5 //+ CV_CALIB_FIX_K6
 | |
|             );
 | |
|         err /= nframes*npoints;
 | |
|         if( err > maxReprojErr )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "The average reprojection error is too big (=%g), testcase %d\n", err, testcase);
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         Mat R1, R2, P1, P2, Q;
 | |
|         Rect roi1, roi2;
 | |
|         rectify(M1, D1, M2, D2, imgsize, R, T, R1, R2, P1, P2, Q, 1, imgsize, &roi1, &roi2, 0);
 | |
|         Mat eye33 = Mat::eye(3,3,CV_64F);
 | |
|         Mat R1t = R1.t(), R2t = R2.t();
 | |
| 
 | |
|         if( cvtest::norm(R1t*R1 - eye33, NORM_L2) > 0.01 ||
 | |
|             cvtest::norm(R2t*R2 - eye33, NORM_L2) > 0.01 ||
 | |
|             abs(determinant(F)) > 0.01)
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "The computed (by rectify) R1 and R2 are not orthogonal,"
 | |
|                 "or the computed (by calibrate) F is not singular, testcase %d\n", testcase);
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if(!checkPandROI(testcase, M1, D1, R1, P1, imgsize, roi1))
 | |
|         {
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if(!checkPandROI(testcase, M2, D2, R2, P2, imgsize, roi2))
 | |
|         {
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         //check that Tx after rectification is equal to distance between cameras
 | |
|         double tx = fabs(P2.at<double>(0, 3) / P2.at<double>(0, 0));
 | |
|         if (fabs(tx - cvtest::norm(T, NORM_L2)) > 1e-5)
 | |
|         {
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         //check that Q reprojects points before the camera
 | |
|         double testPoint[4] = {0.0, 0.0, 100.0, 1.0};
 | |
|         Mat reprojectedTestPoint = Q * Mat_<double>(4, 1, testPoint);
 | |
|         CV_Assert(reprojectedTestPoint.type() == CV_64FC1);
 | |
|         if( reprojectedTestPoint.at<double>(2) / reprojectedTestPoint.at<double>(3) < 0 )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "A point after rectification is reprojected behind the camera, testcase %d\n", testcase);
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         }
 | |
| 
 | |
|         //check that Q reprojects the same points as reconstructed by triangulation
 | |
|         const float minCoord = -300.0f;
 | |
|         const float maxCoord = 300.0f;
 | |
|         const float minDisparity = 0.1f;
 | |
|         const float maxDisparity = 600.0f;
 | |
|         const int pointsCount = 500;
 | |
|         const float requiredAccuracy = 1e-3f;
 | |
|         RNG& rng = ts->get_rng();
 | |
| 
 | |
|         Mat projectedPoints_1(2, pointsCount, CV_32FC1);
 | |
|         Mat projectedPoints_2(2, pointsCount, CV_32FC1);
 | |
|         Mat disparities(1, pointsCount, CV_32FC1);
 | |
| 
 | |
|         rng.fill(projectedPoints_1, RNG::UNIFORM, minCoord, maxCoord);
 | |
|         rng.fill(disparities, RNG::UNIFORM, minDisparity, maxDisparity);
 | |
|         projectedPoints_2.row(0) = projectedPoints_1.row(0) - disparities;
 | |
|         Mat ys_2 = projectedPoints_2.row(1);
 | |
|         projectedPoints_1.row(1).copyTo(ys_2);
 | |
| 
 | |
|         Mat points4d;
 | |
|         triangulate(P1, P2, projectedPoints_1, projectedPoints_2, points4d);
 | |
|         Mat homogeneousPoints4d = points4d.t();
 | |
|         const int dimension = 4;
 | |
|         homogeneousPoints4d = homogeneousPoints4d.reshape(dimension);
 | |
|         Mat triangulatedPoints;
 | |
|         convertPointsFromHomogeneous(homogeneousPoints4d, triangulatedPoints);
 | |
| 
 | |
|         Mat sparsePoints;
 | |
|         sparsePoints.push_back(projectedPoints_1);
 | |
|         sparsePoints.push_back(disparities);
 | |
|         sparsePoints = sparsePoints.t();
 | |
|         sparsePoints = sparsePoints.reshape(3);
 | |
|         Mat reprojectedPoints;
 | |
|         perspectiveTransform(sparsePoints, reprojectedPoints, Q);
 | |
| 
 | |
|         if (cvtest::norm(triangulatedPoints, reprojectedPoints, NORM_L2) / sqrt((double)pointsCount) > requiredAccuracy)
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "Points reprojected with a matrix Q and points reconstructed by triangulation are different, testcase %d\n", testcase);
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         }
 | |
| 
 | |
|         //check correctMatches
 | |
|         const float constraintAccuracy = 1e-5f;
 | |
|         Mat newPoints1, newPoints2;
 | |
|         Mat points1 = projectedPoints_1.t();
 | |
|         points1 = points1.reshape(2, 1);
 | |
|         Mat points2 = projectedPoints_2.t();
 | |
|         points2 = points2.reshape(2, 1);
 | |
|         correctMatches(F, points1, points2, newPoints1, newPoints2);
 | |
|         Mat newHomogeneousPoints1, newHomogeneousPoints2;
 | |
|         convertPointsToHomogeneous(newPoints1, newHomogeneousPoints1);
 | |
|         convertPointsToHomogeneous(newPoints2, newHomogeneousPoints2);
 | |
|         newHomogeneousPoints1 = newHomogeneousPoints1.reshape(1);
 | |
|         newHomogeneousPoints2 = newHomogeneousPoints2.reshape(1);
 | |
|         Mat typedF;
 | |
|         F.convertTo(typedF, newHomogeneousPoints1.type());
 | |
|         for (int i = 0; i < newHomogeneousPoints1.rows; ++i)
 | |
|         {
 | |
|             Mat error = newHomogeneousPoints2.row(i) * typedF * newHomogeneousPoints1.row(i).t();
 | |
|             CV_Assert(error.rows == 1 && error.cols == 1);
 | |
|             if (cvtest::norm(error, NORM_L2) > constraintAccuracy)
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "Epipolar constraint is violated after correctMatches, testcase %d\n", testcase);
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // rectifyUncalibrated
 | |
|         CV_Assert( imgpt1.size() == imgpt2.size() );
 | |
|         Mat _imgpt1( total, 1, CV_32FC2 ), _imgpt2( total, 1, CV_32FC2 );
 | |
|         vector<vector<Point2f> >::const_iterator iit1 = imgpt1.begin();
 | |
|         vector<vector<Point2f> >::const_iterator iit2 = imgpt2.begin();
 | |
|         for( int pi = 0; iit1 != imgpt1.end(); ++iit1, ++iit2 )
 | |
|         {
 | |
|             vector<Point2f>::const_iterator pit1 = iit1->begin();
 | |
|             vector<Point2f>::const_iterator pit2 = iit2->begin();
 | |
|             CV_Assert( iit1->size() == iit2->size() );
 | |
|             for( ; pit1 != iit1->end(); ++pit1, ++pit2, pi++ )
 | |
|             {
 | |
|                 _imgpt1.at<Point2f>(pi,0) = Point2f( pit1->x, pit1->y );
 | |
|                 _imgpt2.at<Point2f>(pi,0) = Point2f( pit2->x, pit2->y );
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         Mat _M1, _M2, _D1, _D2;
 | |
|         vector<Mat> _R1, _R2, _T1, _T2;
 | |
|         calibrateCamera( objpt, imgpt1, imgsize, _M1, _D1, _R1, _T1, 0 );
 | |
|         calibrateCamera( objpt, imgpt2, imgsize, _M2, _D2, _R2, _T2, 0 );
 | |
|         undistortPoints( _imgpt1, _imgpt1, _M1, _D1, Mat(), _M1 );
 | |
|         undistortPoints( _imgpt2, _imgpt2, _M2, _D2, Mat(), _M2 );
 | |
| 
 | |
|         Mat matF, _H1, _H2;
 | |
|         matF = findFundamentalMat( _imgpt1, _imgpt2 );
 | |
|         rectifyUncalibrated( _imgpt1, _imgpt2, matF, imgsize, _H1, _H2 );
 | |
| 
 | |
|         Mat rectifPoints1, rectifPoints2;
 | |
|         perspectiveTransform( _imgpt1, rectifPoints1, _H1 );
 | |
|         perspectiveTransform( _imgpt2, rectifPoints2, _H2 );
 | |
| 
 | |
|         bool verticalStereo = abs(P2.at<double>(0,3)) < abs(P2.at<double>(1,3));
 | |
|         double maxDiff_c = 0, maxDiff_uc = 0;
 | |
|         for( int i = 0, k = 0; i < nframes; i++ )
 | |
|         {
 | |
|             vector<Point2f> temp[2];
 | |
|             undistortPoints(Mat(imgpt1[i]), temp[0], M1, D1, R1, P1);
 | |
|             undistortPoints(Mat(imgpt2[i]), temp[1], M2, D2, R2, P2);
 | |
| 
 | |
|             for( int j = 0; j < npoints; j++, k++ )
 | |
|             {
 | |
|                 double diff_c = verticalStereo ? abs(temp[0][j].x - temp[1][j].x) : abs(temp[0][j].y - temp[1][j].y);
 | |
|                 Point2f d = rectifPoints1.at<Point2f>(k,0) - rectifPoints2.at<Point2f>(k,0);
 | |
|                 double diff_uc = verticalStereo ? abs(d.x) : abs(d.y);
 | |
|                 maxDiff_c = max(maxDiff_c, diff_c);
 | |
|                 maxDiff_uc = max(maxDiff_uc, diff_uc);
 | |
|                 if( maxDiff_c > maxScanlineDistErr_c )
 | |
|                 {
 | |
|                     ts->printf( cvtest::TS::LOG, "The distance between %s coordinates is too big(=%g) (used calibrated stereo), testcase %d\n",
 | |
|                         verticalStereo ? "x" : "y", diff_c, testcase);
 | |
|                     ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|                     return;
 | |
|                 }
 | |
|                 if( maxDiff_uc > maxScanlineDistErr_uc )
 | |
|                 {
 | |
|                     ts->printf( cvtest::TS::LOG, "The distance between %s coordinates is too big(=%g) (used uncalibrated stereo), testcase %d\n",
 | |
|                         verticalStereo ? "x" : "y", diff_uc, testcase);
 | |
|                     ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         ts->printf( cvtest::TS::LOG, "Testcase %d. Max distance (calibrated) =%g\n"
 | |
|             "Max distance (uncalibrated) =%g\n", testcase, maxDiff_c, maxDiff_uc );
 | |
|     }
 | |
| }
 | |
| 
 | |
| //-------------------------------- CV_StereoCalibrationTest_C ------------------------------
 | |
| 
 | |
| class CV_StereoCalibrationTest_C : public CV_StereoCalibrationTest
 | |
| {
 | |
| public:
 | |
|     CV_StereoCalibrationTest_C() {}
 | |
| protected:
 | |
|     virtual double calibrateStereoCamera( const vector<vector<Point3f> >& objectPoints,
 | |
|         const vector<vector<Point2f> >& imagePoints1,
 | |
|         const vector<vector<Point2f> >& imagePoints2,
 | |
|         Mat& cameraMatrix1, Mat& distCoeffs1,
 | |
|         Mat& cameraMatrix2, Mat& distCoeffs2,
 | |
|         Size imageSize, Mat& R, Mat& T,
 | |
|         Mat& E, Mat& F, TermCriteria criteria, int flags );
 | |
|     virtual void rectify( const Mat& cameraMatrix1, const Mat& distCoeffs1,
 | |
|         const Mat& cameraMatrix2, const Mat& distCoeffs2,
 | |
|         Size imageSize, const Mat& R, const Mat& T,
 | |
|         Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q,
 | |
|         double alpha, Size newImageSize,
 | |
|         Rect* validPixROI1, Rect* validPixROI2, int flags );
 | |
|     virtual bool rectifyUncalibrated( const Mat& points1,
 | |
|         const Mat& points2, const Mat& F, Size imgSize,
 | |
|         Mat& H1, Mat& H2, double threshold=5 );
 | |
|     virtual void triangulate( const Mat& P1, const Mat& P2,
 | |
|         const Mat &points1, const Mat &points2,
 | |
|         Mat &points4D );
 | |
|     virtual void correct( const Mat& F,
 | |
|         const Mat &points1, const Mat &points2,
 | |
|         Mat &newPoints1, Mat &newPoints2 );
 | |
| };
 | |
| 
 | |
| double CV_StereoCalibrationTest_C::calibrateStereoCamera( const vector<vector<Point3f> >& objectPoints,
 | |
|                  const vector<vector<Point2f> >& imagePoints1,
 | |
|                  const vector<vector<Point2f> >& imagePoints2,
 | |
|                  Mat& cameraMatrix1, Mat& distCoeffs1,
 | |
|                  Mat& cameraMatrix2, Mat& distCoeffs2,
 | |
|                  Size imageSize, Mat& R, Mat& T,
 | |
|                  Mat& E, Mat& F, TermCriteria criteria, int flags )
 | |
| {
 | |
|     cameraMatrix1.create( 3, 3, CV_64F );
 | |
|     cameraMatrix2.create( 3, 3, CV_64F);
 | |
|     distCoeffs1.create( 1, 5, CV_64F);
 | |
|     distCoeffs2.create( 1, 5, CV_64F);
 | |
|     R.create(3, 3, CV_64F);
 | |
|     T.create(3, 1, CV_64F);
 | |
|     E.create(3, 3, CV_64F);
 | |
|     F.create(3, 3, CV_64F);
 | |
| 
 | |
|     int  nimages = (int)objectPoints.size(), total = 0;
 | |
|     for( int i = 0; i < nimages; i++ )
 | |
|     {
 | |
|         total += (int)objectPoints[i].size();
 | |
|     }
 | |
| 
 | |
|     Mat npoints( 1, nimages, CV_32S ),
 | |
|         objPt( 1, total, DataType<Point3f>::type ),
 | |
|         imgPt( 1, total, DataType<Point2f>::type ),
 | |
|         imgPt2( 1, total, DataType<Point2f>::type );
 | |
| 
 | |
|     Point2f* imgPtData2 = imgPt2.ptr<Point2f>();
 | |
|     Point3f* objPtData = objPt.ptr<Point3f>();
 | |
|     Point2f* imgPtData = imgPt.ptr<Point2f>();
 | |
|     for( int i = 0, ni = 0, j = 0; i < nimages; i++, j += ni )
 | |
|     {
 | |
|         ni = (int)objectPoints[i].size();
 | |
|         npoints.ptr<int>()[i] = ni;
 | |
|         std::copy(objectPoints[i].begin(), objectPoints[i].end(), objPtData + j);
 | |
|         std::copy(imagePoints1[i].begin(), imagePoints1[i].end(), imgPtData + j);
 | |
|         std::copy(imagePoints2[i].begin(), imagePoints2[i].end(), imgPtData2 + j);
 | |
|     }
 | |
|     CvMat _objPt = objPt, _imgPt = imgPt, _imgPt2 = imgPt2, _npoints = npoints;
 | |
|     CvMat _cameraMatrix1 = cameraMatrix1, _distCoeffs1 = distCoeffs1;
 | |
|     CvMat _cameraMatrix2 = cameraMatrix2, _distCoeffs2 = distCoeffs2;
 | |
|     CvMat matR = R, matT = T, matE = E, matF = F;
 | |
| 
 | |
|     return cvStereoCalibrate(&_objPt, &_imgPt, &_imgPt2, &_npoints, &_cameraMatrix1,
 | |
|         &_distCoeffs1, &_cameraMatrix2, &_distCoeffs2, imageSize,
 | |
|         &matR, &matT, &matE, &matF, flags, criteria );
 | |
| }
 | |
| 
 | |
| void CV_StereoCalibrationTest_C::rectify( const Mat& cameraMatrix1, const Mat& distCoeffs1,
 | |
|              const Mat& cameraMatrix2, const Mat& distCoeffs2,
 | |
|              Size imageSize, const Mat& R, const Mat& T,
 | |
|              Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q,
 | |
|              double alpha, Size newImageSize,
 | |
|              Rect* validPixROI1, Rect* validPixROI2, int flags )
 | |
| {
 | |
|     int rtype = CV_64F;
 | |
|     R1.create(3, 3, rtype);
 | |
|     R2.create(3, 3, rtype);
 | |
|     P1.create(3, 4, rtype);
 | |
|     P2.create(3, 4, rtype);
 | |
|     Q.create(4, 4, rtype);
 | |
|     CvMat _cameraMatrix1 = cameraMatrix1, _distCoeffs1 = distCoeffs1;
 | |
|     CvMat _cameraMatrix2 = cameraMatrix2, _distCoeffs2 = distCoeffs2;
 | |
|     CvMat matR = R, matT = T, _R1 = R1, _R2 = R2, _P1 = P1, _P2 = P2, matQ = Q;
 | |
|     cvStereoRectify( &_cameraMatrix1, &_cameraMatrix2, &_distCoeffs1, &_distCoeffs2,
 | |
|         imageSize, &matR, &matT, &_R1, &_R2, &_P1, &_P2, &matQ, flags,
 | |
|         alpha, newImageSize, (CvRect*)validPixROI1, (CvRect*)validPixROI2);
 | |
| }
 | |
| 
 | |
| bool CV_StereoCalibrationTest_C::rectifyUncalibrated( const Mat& points1,
 | |
|            const Mat& points2, const Mat& F, Size imgSize, Mat& H1, Mat& H2, double threshold )
 | |
| {
 | |
|     H1.create(3, 3, CV_64F);
 | |
|     H2.create(3, 3, CV_64F);
 | |
|     CvMat _pt1 = points1, _pt2 = points2, matF, *pF=0, _H1 = H1, _H2 = H2;
 | |
|     if( F.size() == Size(3, 3) )
 | |
|         pF = &(matF = F);
 | |
|     return cvStereoRectifyUncalibrated(&_pt1, &_pt2, pF, imgSize, &_H1, &_H2, threshold) > 0;
 | |
| }
 | |
| 
 | |
| void CV_StereoCalibrationTest_C::triangulate( const Mat& P1, const Mat& P2,
 | |
|         const Mat &points1, const Mat &points2,
 | |
|         Mat &points4D )
 | |
| {
 | |
|     CvMat _P1 = P1, _P2 = P2, _points1 = points1, _points2 = points2;
 | |
|     points4D.create(4, points1.cols, points1.type());
 | |
|     CvMat _points4D = points4D;
 | |
|     cvTriangulatePoints(&_P1, &_P2, &_points1, &_points2, &_points4D);
 | |
| }
 | |
| 
 | |
| void CV_StereoCalibrationTest_C::correct( const Mat& F,
 | |
|         const Mat &points1, const Mat &points2,
 | |
|         Mat &newPoints1, Mat &newPoints2 )
 | |
| {
 | |
|     CvMat _F = F, _points1 = points1, _points2 = points2;
 | |
|     newPoints1.create(1, points1.cols, points1.type());
 | |
|     newPoints2.create(1, points2.cols, points2.type());
 | |
|     CvMat _newPoints1 = newPoints1, _newPoints2 = newPoints2;
 | |
|     cvCorrectMatches(&_F, &_points1, &_points2, &_newPoints1, &_newPoints2);
 | |
| }
 | |
| 
 | |
| //-------------------------------- CV_StereoCalibrationTest_CPP ------------------------------
 | |
| 
 | |
| class CV_StereoCalibrationTest_CPP : public CV_StereoCalibrationTest
 | |
| {
 | |
| public:
 | |
|     CV_StereoCalibrationTest_CPP() {}
 | |
| protected:
 | |
|     virtual double calibrateStereoCamera( const vector<vector<Point3f> >& objectPoints,
 | |
|         const vector<vector<Point2f> >& imagePoints1,
 | |
|         const vector<vector<Point2f> >& imagePoints2,
 | |
|         Mat& cameraMatrix1, Mat& distCoeffs1,
 | |
|         Mat& cameraMatrix2, Mat& distCoeffs2,
 | |
|         Size imageSize, Mat& R, Mat& T,
 | |
|         Mat& E, Mat& F, TermCriteria criteria, int flags );
 | |
|     virtual void rectify( const Mat& cameraMatrix1, const Mat& distCoeffs1,
 | |
|         const Mat& cameraMatrix2, const Mat& distCoeffs2,
 | |
|         Size imageSize, const Mat& R, const Mat& T,
 | |
|         Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q,
 | |
|         double alpha, Size newImageSize,
 | |
|         Rect* validPixROI1, Rect* validPixROI2, int flags );
 | |
|     virtual bool rectifyUncalibrated( const Mat& points1,
 | |
|         const Mat& points2, const Mat& F, Size imgSize,
 | |
|         Mat& H1, Mat& H2, double threshold=5 );
 | |
|     virtual void triangulate( const Mat& P1, const Mat& P2,
 | |
|         const Mat &points1, const Mat &points2,
 | |
|         Mat &points4D );
 | |
|     virtual void correct( const Mat& F,
 | |
|         const Mat &points1, const Mat &points2,
 | |
|         Mat &newPoints1, Mat &newPoints2 );
 | |
| };
 | |
| 
 | |
| double CV_StereoCalibrationTest_CPP::calibrateStereoCamera( const vector<vector<Point3f> >& objectPoints,
 | |
|                                              const vector<vector<Point2f> >& imagePoints1,
 | |
|                                              const vector<vector<Point2f> >& imagePoints2,
 | |
|                                              Mat& cameraMatrix1, Mat& distCoeffs1,
 | |
|                                              Mat& cameraMatrix2, Mat& distCoeffs2,
 | |
|                                              Size imageSize, Mat& R, Mat& T,
 | |
|                                              Mat& E, Mat& F, TermCriteria criteria, int flags )
 | |
| {
 | |
|     return stereoCalibrate( objectPoints, imagePoints1, imagePoints2,
 | |
|                     cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2,
 | |
|                     imageSize, R, T, E, F, flags, criteria );
 | |
| }
 | |
| 
 | |
| void CV_StereoCalibrationTest_CPP::rectify( const Mat& cameraMatrix1, const Mat& distCoeffs1,
 | |
|                                          const Mat& cameraMatrix2, const Mat& distCoeffs2,
 | |
|                                          Size imageSize, const Mat& R, const Mat& T,
 | |
|                                          Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q,
 | |
|                                          double alpha, Size newImageSize,
 | |
|                                          Rect* validPixROI1, Rect* validPixROI2, int flags )
 | |
| {
 | |
|     stereoRectify( cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2,
 | |
|                 imageSize, R, T, R1, R2, P1, P2, Q, flags, alpha, newImageSize,validPixROI1, validPixROI2 );
 | |
| }
 | |
| 
 | |
| bool CV_StereoCalibrationTest_CPP::rectifyUncalibrated( const Mat& points1,
 | |
|                        const Mat& points2, const Mat& F, Size imgSize, Mat& H1, Mat& H2, double threshold )
 | |
| {
 | |
|     return stereoRectifyUncalibrated( points1, points2, F, imgSize, H1, H2, threshold );
 | |
| }
 | |
| 
 | |
| void CV_StereoCalibrationTest_CPP::triangulate( const Mat& P1, const Mat& P2,
 | |
|         const Mat &points1, const Mat &points2,
 | |
|         Mat &points4D )
 | |
| {
 | |
|     triangulatePoints(P1, P2, points1, points2, points4D);
 | |
| }
 | |
| 
 | |
| void CV_StereoCalibrationTest_CPP::correct( const Mat& F,
 | |
|         const Mat &points1, const Mat &points2,
 | |
|         Mat &newPoints1, Mat &newPoints2 )
 | |
| {
 | |
|     correctMatches(F, points1, points2, newPoints1, newPoints2);
 | |
| }
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| TEST(Calib3d_CalibrateCamera_C, regression) { CV_CameraCalibrationTest_C test; test.safe_run(); }
 | |
| TEST(Calib3d_CalibrateCamera_CPP, regression) { CV_CameraCalibrationTest_CPP test; test.safe_run(); }
 | |
| TEST(Calib3d_CalibrationMatrixValues_C, accuracy) { CV_CalibrationMatrixValuesTest_C test; test.safe_run(); }
 | |
| TEST(Calib3d_CalibrationMatrixValues_CPP, accuracy) { CV_CalibrationMatrixValuesTest_CPP test; test.safe_run(); }
 | |
| TEST(Calib3d_ProjectPoints_C, accuracy) { CV_ProjectPointsTest_C  test; test.safe_run(); }
 | |
| TEST(Calib3d_ProjectPoints_CPP, regression) { CV_ProjectPointsTest_CPP test; test.safe_run(); }
 | |
| TEST(Calib3d_StereoCalibrate_C, regression) { CV_StereoCalibrationTest_C test; test.safe_run(); }
 | |
| TEST(Calib3d_StereoCalibrate_CPP, regression) { CV_StereoCalibrationTest_CPP test; test.safe_run(); }
 |