opencv/samples/gpu/cascadeclassifier_nvidia_api.cpp
2011-02-07 13:47:10 +00:00

356 lines
13 KiB
C++

#pragma warning( disable : 4201 4408 4127 4100)
#include <cstdio>
#include "cvconfig.h"
#if !defined(HAVE_CUDA)
int main( int argc, const char** argv ) { return printf("Please compile the library with CUDA support."), -1; }
#else
#include <cuda_runtime.h>
#include "opencv2/opencv.hpp"
#include "NCVHaarObjectDetection.hpp"
using namespace cv;
const Size2i preferredVideoFrameSize(640, 480);
std::string preferredClassifier = "haarcascade_frontalface_alt.xml";
std::string wndTitle = "NVIDIA Computer Vision SDK :: Face Detection in Video Feed";
void printSyntax(void)
{
printf("Syntax: FaceDetectionFeed.exe [-c cameranum | -v filename] classifier.xml\n");
}
void imagePrintf(Mat& img, int lineOffsY, Scalar color, const char *format, ...)
{
int fontFace = CV_FONT_HERSHEY_PLAIN;
double fontScale = 1;
int baseline;
Size textSize = cv::getTextSize("T", fontFace, fontScale, 1, &baseline);
va_list arg_ptr;
va_start(arg_ptr, format);
char strBuf[4096];
vsprintf(&strBuf[0], format, arg_ptr);
Point org(1, 3 * textSize.height * (lineOffsY + 1) / 2);
putText(img, &strBuf[0], org, fontFace, fontScale, color);
va_end(arg_ptr);
}
NCVStatus process(Mat *srcdst,
Ncv32u width, Ncv32u height,
NcvBool bShowAllHypotheses, NcvBool bLargestFace,
HaarClassifierCascadeDescriptor &haar,
NCVVector<HaarStage64> &d_haarStages, NCVVector<HaarClassifierNode128> &d_haarNodes,
NCVVector<HaarFeature64> &d_haarFeatures, NCVVector<HaarStage64> &h_haarStages,
INCVMemAllocator &gpuAllocator,
INCVMemAllocator &cpuAllocator,
cudaDeviceProp &devProp)
{
ncvAssertReturn(!((srcdst == NULL) ^ gpuAllocator.isCounting()), NCV_NULL_PTR);
NCVStatus ncvStat;
NCV_SET_SKIP_COND(gpuAllocator.isCounting());
NCVMatrixAlloc<Ncv8u> d_src(gpuAllocator, width, height);
ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
NCVMatrixAlloc<Ncv8u> h_src(cpuAllocator, width, height);
ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
NCVVectorAlloc<NcvRect32u> d_rects(gpuAllocator, 100);
ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
NCV_SKIP_COND_BEGIN
for (Ncv32u i=0; i<(Ncv32u)srcdst->rows; i++)
{
memcpy(h_src.ptr() + i * h_src.stride(), srcdst->ptr(i), srcdst->cols);
}
ncvStat = h_src.copySolid(d_src, 0);
ncvAssertReturnNcvStat(ncvStat);
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
NCV_SKIP_COND_END
NcvSize32u roi;
roi.width = d_src.width();
roi.height = d_src.height();
Ncv32u numDetections;
ncvStat = ncvDetectObjectsMultiScale_device(
d_src, roi, d_rects, numDetections, haar, h_haarStages,
d_haarStages, d_haarNodes, d_haarFeatures,
haar.ClassifierSize,
bShowAllHypotheses ? 0 : 4,
1.2f, 1,
(bLargestFace ? NCVPipeObjDet_FindLargestObject : 0)
| NCVPipeObjDet_VisualizeInPlace,
gpuAllocator, cpuAllocator, devProp, 0);
ncvAssertReturnNcvStat(ncvStat);
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
NCV_SKIP_COND_BEGIN
ncvStat = d_src.copySolid(h_src, 0);
ncvAssertReturnNcvStat(ncvStat);
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
for (Ncv32u i=0; i<(Ncv32u)srcdst->rows; i++)
{
memcpy(srcdst->ptr(i), h_src.ptr() + i * h_src.stride(), srcdst->cols);
}
NCV_SKIP_COND_END
return NCV_SUCCESS;
}
int main( int argc, const char** argv )
{
NCVStatus ncvStat;
printf("NVIDIA Computer Vision SDK\n");
printf("Face Detection in video and live feed\n");
printf("=========================================\n");
printf(" Esc - Quit\n");
printf(" Space - Switch between NCV and OpenCV\n");
printf(" L - Switch between FullSearch and LargestFace modes\n");
printf(" U - Toggle unfiltered hypotheses visualization in FullSearch\n");
VideoCapture capture;
bool bQuit = false;
Size2i frameSize;
if (argc != 4 && argc != 1)
{
printSyntax();
return -1;
}
if (argc == 1 || strcmp(argv[1], "-c") == 0)
{
// Camera input is specified
int camIdx = (argc == 3) ? atoi(argv[2]) : 0;
if(!capture.open(camIdx))
return printf("Error opening camera\n"), -1;
capture.set(CV_CAP_PROP_FRAME_WIDTH, preferredVideoFrameSize.width);
capture.set(CV_CAP_PROP_FRAME_HEIGHT, preferredVideoFrameSize.height);
capture.set(CV_CAP_PROP_FPS, 25);
frameSize = preferredVideoFrameSize;
}
else if (strcmp(argv[1], "-v") == 0)
{
// Video file input (avi)
if(!capture.open(argv[2]))
return printf("Error opening video file\n"), -1;
frameSize.width = (int)capture.get(CV_CAP_PROP_FRAME_WIDTH);
frameSize.height = (int)capture.get(CV_CAP_PROP_FRAME_HEIGHT);
}
else
return printSyntax(), -1;
NcvBool bUseOpenCV = true;
NcvBool bLargestFace = false; //LargestFace=true is used usually during training
NcvBool bShowAllHypotheses = false;
CascadeClassifier classifierOpenCV;
std::string classifierFile;
if (argc == 1)
{
classifierFile = preferredClassifier;
}
else
{
classifierFile.assign(argv[3]);
}
if (!classifierOpenCV.load(classifierFile))
{
printf("Error (in OpenCV) opening classifier\n");
printSyntax();
return -1;
}
int devId;
ncvAssertCUDAReturn(cudaGetDevice(&devId), -1);
cudaDeviceProp devProp;
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), -1);
printf("Using GPU %d %s, arch=%d.%d\n", devId, devProp.name, devProp.major, devProp.minor);
//==============================================================================
//
// Load the classifier from file (assuming its size is about 1 mb)
// using a simple allocator
//
//==============================================================================
NCVMemNativeAllocator gpuCascadeAllocator(NCVMemoryTypeDevice, devProp.textureAlignment);
ncvAssertPrintReturn(gpuCascadeAllocator.isInitialized(), "Error creating cascade GPU allocator", -1);
NCVMemNativeAllocator cpuCascadeAllocator(NCVMemoryTypeHostPinned, devProp.textureAlignment);
ncvAssertPrintReturn(cpuCascadeAllocator.isInitialized(), "Error creating cascade CPU allocator", -1);
Ncv32u haarNumStages, haarNumNodes, haarNumFeatures;
ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", -1);
NCVVectorAlloc<HaarStage64> h_haarStages(cpuCascadeAllocator, haarNumStages);
ncvAssertPrintReturn(h_haarStages.isMemAllocated(), "Error in cascade CPU allocator", -1);
NCVVectorAlloc<HaarClassifierNode128> h_haarNodes(cpuCascadeAllocator, haarNumNodes);
ncvAssertPrintReturn(h_haarNodes.isMemAllocated(), "Error in cascade CPU allocator", -1);
NCVVectorAlloc<HaarFeature64> h_haarFeatures(cpuCascadeAllocator, haarNumFeatures);
ncvAssertPrintReturn(h_haarFeatures.isMemAllocated(), "Error in cascade CPU allocator", -1);
HaarClassifierCascadeDescriptor haar;
ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, h_haarStages, h_haarNodes, h_haarFeatures);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", -1);
NCVVectorAlloc<HaarStage64> d_haarStages(gpuCascadeAllocator, haarNumStages);
ncvAssertPrintReturn(d_haarStages.isMemAllocated(), "Error in cascade GPU allocator", -1);
NCVVectorAlloc<HaarClassifierNode128> d_haarNodes(gpuCascadeAllocator, haarNumNodes);
ncvAssertPrintReturn(d_haarNodes.isMemAllocated(), "Error in cascade GPU allocator", -1);
NCVVectorAlloc<HaarFeature64> d_haarFeatures(gpuCascadeAllocator, haarNumFeatures);
ncvAssertPrintReturn(d_haarFeatures.isMemAllocated(), "Error in cascade GPU allocator", -1);
ncvStat = h_haarStages.copySolid(d_haarStages, 0);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1);
ncvStat = h_haarNodes.copySolid(d_haarNodes, 0);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1);
ncvStat = h_haarFeatures.copySolid(d_haarFeatures, 0);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1);
//==============================================================================
//
// Calculate memory requirements and create real allocators
//
//==============================================================================
NCVMemStackAllocator gpuCounter(devProp.textureAlignment);
ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", -1);
NCVMemStackAllocator cpuCounter(devProp.textureAlignment);
ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", -1);
ncvStat = process(NULL, frameSize.width, frameSize.height,
false, false, haar,
d_haarStages, d_haarNodes,
d_haarFeatures, h_haarStages,
gpuCounter, cpuCounter, devProp);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error in memory counting pass", -1);
NCVMemStackAllocator gpuAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), devProp.textureAlignment);
ncvAssertPrintReturn(gpuAllocator.isInitialized(), "Error creating GPU memory allocator", -1);
NCVMemStackAllocator cpuAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), devProp.textureAlignment);
ncvAssertPrintReturn(cpuAllocator.isInitialized(), "Error creating CPU memory allocator", -1);
printf("Initialized for frame size [%dx%d]\n", frameSize.width, frameSize.height);
//==============================================================================
//
// Main processing loop
//
//==============================================================================
namedWindow(wndTitle, 1);
Mat frame, gray, frameDisp;
do
{
// For camera and video file, capture the next image
capture >> frame;
if (frame.empty())
break;
Mat gray;
cvtColor(frame, gray, CV_BGR2GRAY);
//
// process
//
NcvSize32u minSize = haar.ClassifierSize;
if (bLargestFace)
{
Ncv32u ratioX = preferredVideoFrameSize.width / minSize.width;
Ncv32u ratioY = preferredVideoFrameSize.height / minSize.height;
Ncv32u ratioSmallest = std::min(ratioX, ratioY);
ratioSmallest = std::max((Ncv32u)(ratioSmallest / 2.5f), (Ncv32u)1);
minSize.width *= ratioSmallest;
minSize.height *= ratioSmallest;
}
Ncv32f avgTime;
NcvTimer timer = ncvStartTimer();
if (!bUseOpenCV)
{
ncvStat = process(&gray, frameSize.width, frameSize.height,
bShowAllHypotheses, bLargestFace, haar,
d_haarStages, d_haarNodes,
d_haarFeatures, h_haarStages,
gpuAllocator, cpuAllocator, devProp);
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error in memory counting pass", -1);
}
else
{
vector<Rect> rectsOpenCV;
classifierOpenCV.detectMultiScale(
gray,
rectsOpenCV,
1.2f,
bShowAllHypotheses && !bLargestFace ? 0 : 4,
(bLargestFace ? CV_HAAR_FIND_BIGGEST_OBJECT : 0)
| CV_HAAR_SCALE_IMAGE,
Size(minSize.width, minSize.height));
for (size_t rt = 0; rt < rectsOpenCV.size(); ++rt)
rectangle(gray, rectsOpenCV[rt], Scalar(255));
}
avgTime = (Ncv32f)ncvEndQueryTimerMs(timer);
cvtColor(gray, frameDisp, CV_GRAY2BGR);
imagePrintf(frameDisp, 0, CV_RGB(255, 0,0), "Space - Switch NCV%s / OpenCV%s", bUseOpenCV?"":" (ON)", bUseOpenCV?" (ON)":"");
imagePrintf(frameDisp, 1, CV_RGB(255, 0,0), "L - Switch FullSearch%s / LargestFace%s modes", bLargestFace?"":" (ON)", bLargestFace?" (ON)":"");
imagePrintf(frameDisp, 2, CV_RGB(255, 0,0), "U - Toggle unfiltered hypotheses visualization in FullSearch %s", bShowAllHypotheses?"(ON)":"(OFF)");
imagePrintf(frameDisp, 3, CV_RGB(118,185,0), " Running at %f FPS on %s", 1000.0f / avgTime, bUseOpenCV?"CPU":"GPU");
cv::imshow(wndTitle, frameDisp);
switch (cvWaitKey(1))
{
case ' ':
bUseOpenCV = !bUseOpenCV;
break;
case 'L':
case 'l':
bLargestFace = !bLargestFace;
break;
case 'U':
case 'u':
bShowAllHypotheses = !bShowAllHypotheses;
break;
case 27:
bQuit = true;
break;
}
} while (!bQuit);
cvDestroyWindow(wndTitle.c_str());
return 0;
}
#endif