363 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			363 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#ifndef __OPENCV_CUDAIMGPROC_HPP__
 | 
						|
#define __OPENCV_CUDAIMGPROC_HPP__
 | 
						|
 | 
						|
#ifndef __cplusplus
 | 
						|
#  error cudaimgproc.hpp header must be compiled as C++
 | 
						|
#endif
 | 
						|
 | 
						|
#include "opencv2/core/cuda.hpp"
 | 
						|
#include "opencv2/imgproc.hpp"
 | 
						|
 | 
						|
namespace cv { namespace cuda {
 | 
						|
 | 
						|
/////////////////////////// Color Processing ///////////////////////////
 | 
						|
 | 
						|
//! converts image from one color space to another
 | 
						|
CV_EXPORTS void cvtColor(InputArray src, OutputArray dst, int code, int dcn = 0, Stream& stream = Stream::Null());
 | 
						|
 | 
						|
enum
 | 
						|
{
 | 
						|
    // Bayer Demosaicing (Malvar, He, and Cutler)
 | 
						|
    COLOR_BayerBG2BGR_MHT = 256,
 | 
						|
    COLOR_BayerGB2BGR_MHT = 257,
 | 
						|
    COLOR_BayerRG2BGR_MHT = 258,
 | 
						|
    COLOR_BayerGR2BGR_MHT = 259,
 | 
						|
 | 
						|
    COLOR_BayerBG2RGB_MHT = COLOR_BayerRG2BGR_MHT,
 | 
						|
    COLOR_BayerGB2RGB_MHT = COLOR_BayerGR2BGR_MHT,
 | 
						|
    COLOR_BayerRG2RGB_MHT = COLOR_BayerBG2BGR_MHT,
 | 
						|
    COLOR_BayerGR2RGB_MHT = COLOR_BayerGB2BGR_MHT,
 | 
						|
 | 
						|
    COLOR_BayerBG2GRAY_MHT = 260,
 | 
						|
    COLOR_BayerGB2GRAY_MHT = 261,
 | 
						|
    COLOR_BayerRG2GRAY_MHT = 262,
 | 
						|
    COLOR_BayerGR2GRAY_MHT = 263
 | 
						|
};
 | 
						|
CV_EXPORTS void demosaicing(InputArray src, OutputArray dst, int code, int dcn = -1, Stream& stream = Stream::Null());
 | 
						|
 | 
						|
//! swap channels
 | 
						|
//! dstOrder - Integer array describing how channel values are permutated. The n-th entry
 | 
						|
//!            of the array contains the number of the channel that is stored in the n-th channel of
 | 
						|
//!            the output image. E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR
 | 
						|
//!            channel order.
 | 
						|
CV_EXPORTS void swapChannels(InputOutputArray image, const int dstOrder[4], Stream& stream = Stream::Null());
 | 
						|
 | 
						|
//! Routines for correcting image color gamma
 | 
						|
CV_EXPORTS void gammaCorrection(InputArray src, OutputArray dst, bool forward = true, Stream& stream = Stream::Null());
 | 
						|
 | 
						|
enum { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL,
 | 
						|
       ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL};
 | 
						|
 | 
						|
//! Composite two images using alpha opacity values contained in each image
 | 
						|
//! Supports CV_8UC4, CV_16UC4, CV_32SC4 and CV_32FC4 types
 | 
						|
CV_EXPORTS void alphaComp(InputArray img1, InputArray img2, OutputArray dst, int alpha_op, Stream& stream = Stream::Null());
 | 
						|
 | 
						|
////////////////////////////// Histogram ///////////////////////////////
 | 
						|
 | 
						|
//! Calculates histogram for 8u one channel image
 | 
						|
//! Output hist will have one row, 256 cols and CV32SC1 type.
 | 
						|
CV_EXPORTS void calcHist(InputArray src, OutputArray hist, Stream& stream = Stream::Null());
 | 
						|
 | 
						|
//! normalizes the grayscale image brightness and contrast by normalizing its histogram
 | 
						|
CV_EXPORTS void equalizeHist(InputArray src, OutputArray dst, InputOutputArray buf, Stream& stream = Stream::Null());
 | 
						|
 | 
						|
static inline void equalizeHist(InputArray src, OutputArray dst, Stream& stream = Stream::Null())
 | 
						|
{
 | 
						|
    GpuMat buf;
 | 
						|
    cuda::equalizeHist(src, dst, buf, stream);
 | 
						|
}
 | 
						|
 | 
						|
class CV_EXPORTS CLAHE : public cv::CLAHE
 | 
						|
{
 | 
						|
public:
 | 
						|
    using cv::CLAHE::apply;
 | 
						|
    virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0;
 | 
						|
};
 | 
						|
CV_EXPORTS Ptr<cuda::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
 | 
						|
 | 
						|
//! Compute levels with even distribution. levels will have 1 row and nLevels cols and CV_32SC1 type.
 | 
						|
CV_EXPORTS void evenLevels(OutputArray levels, int nLevels, int lowerLevel, int upperLevel);
 | 
						|
 | 
						|
//! Calculates histogram with evenly distributed bins for signle channel source.
 | 
						|
//! Supports CV_8UC1, CV_16UC1 and CV_16SC1 source types.
 | 
						|
//! Output hist will have one row and histSize cols and CV_32SC1 type.
 | 
						|
CV_EXPORTS void histEven(InputArray src, OutputArray hist, InputOutputArray buf, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
 | 
						|
 | 
						|
static inline void histEven(InputArray src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null())
 | 
						|
{
 | 
						|
    GpuMat buf;
 | 
						|
    cuda::histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream);
 | 
						|
}
 | 
						|
 | 
						|
//! Calculates histogram with evenly distributed bins for four-channel source.
 | 
						|
//! All channels of source are processed separately.
 | 
						|
//! Supports CV_8UC4, CV_16UC4 and CV_16SC4 source types.
 | 
						|
//! Output hist[i] will have one row and histSize[i] cols and CV_32SC1 type.
 | 
						|
CV_EXPORTS void histEven(InputArray src, GpuMat hist[4], InputOutputArray buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
 | 
						|
 | 
						|
static inline void histEven(InputArray src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null())
 | 
						|
{
 | 
						|
    GpuMat buf;
 | 
						|
    cuda::histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream);
 | 
						|
}
 | 
						|
 | 
						|
//! Calculates histogram with bins determined by levels array.
 | 
						|
//! levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
 | 
						|
//! Supports CV_8UC1, CV_16UC1, CV_16SC1 and CV_32FC1 source types.
 | 
						|
//! Output hist will have one row and (levels.cols-1) cols and CV_32SC1 type.
 | 
						|
CV_EXPORTS void histRange(InputArray src, OutputArray hist, InputArray levels, InputOutputArray buf, Stream& stream = Stream::Null());
 | 
						|
 | 
						|
static inline void histRange(InputArray src, OutputArray hist, InputArray levels, Stream& stream = Stream::Null())
 | 
						|
{
 | 
						|
    GpuMat buf;
 | 
						|
    cuda::histRange(src, hist, levels, buf, stream);
 | 
						|
}
 | 
						|
 | 
						|
//! Calculates histogram with bins determined by levels array.
 | 
						|
//! All levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
 | 
						|
//! All channels of source are processed separately.
 | 
						|
//! Supports CV_8UC4, CV_16UC4, CV_16SC4 and CV_32FC4 source types.
 | 
						|
//! Output hist[i] will have one row and (levels[i].cols-1) cols and CV_32SC1 type.
 | 
						|
CV_EXPORTS void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], InputOutputArray buf, Stream& stream = Stream::Null());
 | 
						|
 | 
						|
static inline void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null())
 | 
						|
{
 | 
						|
    GpuMat buf;
 | 
						|
    cuda::histRange(src, hist, levels, buf, stream);
 | 
						|
}
 | 
						|
 | 
						|
//////////////////////////////// Canny ////////////////////////////////
 | 
						|
 | 
						|
class CV_EXPORTS CannyEdgeDetector : public Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    virtual void detect(InputArray image, OutputArray edges) = 0;
 | 
						|
    virtual void detect(InputArray dx, InputArray dy, OutputArray edges) = 0;
 | 
						|
 | 
						|
    virtual void setLowThreshold(double low_thresh) = 0;
 | 
						|
    virtual double getLowThreshold() const = 0;
 | 
						|
 | 
						|
    virtual void setHighThreshold(double high_thresh) = 0;
 | 
						|
    virtual double getHighThreshold() const = 0;
 | 
						|
 | 
						|
    virtual void setAppertureSize(int apperture_size) = 0;
 | 
						|
    virtual int getAppertureSize() const = 0;
 | 
						|
 | 
						|
    virtual void setL2Gradient(bool L2gradient) = 0;
 | 
						|
    virtual bool getL2Gradient() const = 0;
 | 
						|
};
 | 
						|
 | 
						|
CV_EXPORTS Ptr<CannyEdgeDetector> createCannyEdgeDetector(double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
 | 
						|
 | 
						|
/////////////////////////// Hough Transform ////////////////////////////
 | 
						|
 | 
						|
//////////////////////////////////////
 | 
						|
// HoughLines
 | 
						|
 | 
						|
class CV_EXPORTS HoughLinesDetector : public Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    virtual void detect(InputArray src, OutputArray lines) = 0;
 | 
						|
    virtual void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray()) = 0;
 | 
						|
 | 
						|
    virtual void setRho(float rho) = 0;
 | 
						|
    virtual float getRho() const = 0;
 | 
						|
 | 
						|
    virtual void setTheta(float theta) = 0;
 | 
						|
    virtual float getTheta() const = 0;
 | 
						|
 | 
						|
    virtual void setThreshold(int threshold) = 0;
 | 
						|
    virtual int getThreshold() const = 0;
 | 
						|
 | 
						|
    virtual void setDoSort(bool doSort) = 0;
 | 
						|
    virtual bool getDoSort() const = 0;
 | 
						|
 | 
						|
    virtual void setMaxLines(int maxLines) = 0;
 | 
						|
    virtual int getMaxLines() const = 0;
 | 
						|
};
 | 
						|
 | 
						|
CV_EXPORTS Ptr<HoughLinesDetector> createHoughLinesDetector(float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
 | 
						|
 | 
						|
 | 
						|
//////////////////////////////////////
 | 
						|
// HoughLinesP
 | 
						|
 | 
						|
//! finds line segments in the black-n-white image using probabilistic Hough transform
 | 
						|
class CV_EXPORTS HoughSegmentDetector : public Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    virtual void detect(InputArray src, OutputArray lines) = 0;
 | 
						|
 | 
						|
    virtual void setRho(float rho) = 0;
 | 
						|
    virtual float getRho() const = 0;
 | 
						|
 | 
						|
    virtual void setTheta(float theta) = 0;
 | 
						|
    virtual float getTheta() const = 0;
 | 
						|
 | 
						|
    virtual void setMinLineLength(int minLineLength) = 0;
 | 
						|
    virtual int getMinLineLength() const = 0;
 | 
						|
 | 
						|
    virtual void setMaxLineGap(int maxLineGap) = 0;
 | 
						|
    virtual int getMaxLineGap() const = 0;
 | 
						|
 | 
						|
    virtual void setMaxLines(int maxLines) = 0;
 | 
						|
    virtual int getMaxLines() const = 0;
 | 
						|
};
 | 
						|
 | 
						|
CV_EXPORTS Ptr<HoughSegmentDetector> createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);
 | 
						|
 | 
						|
//////////////////////////////////////
 | 
						|
// HoughCircles
 | 
						|
 | 
						|
class CV_EXPORTS HoughCirclesDetector : public Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    virtual void detect(InputArray src, OutputArray circles) = 0;
 | 
						|
 | 
						|
    virtual void setDp(float dp) = 0;
 | 
						|
    virtual float getDp() const = 0;
 | 
						|
 | 
						|
    virtual void setMinDist(float minDist) = 0;
 | 
						|
    virtual float getMinDist() const = 0;
 | 
						|
 | 
						|
    virtual void setCannyThreshold(int cannyThreshold) = 0;
 | 
						|
    virtual int getCannyThreshold() const = 0;
 | 
						|
 | 
						|
    virtual void setVotesThreshold(int votesThreshold) = 0;
 | 
						|
    virtual int getVotesThreshold() const = 0;
 | 
						|
 | 
						|
    virtual void setMinRadius(int minRadius) = 0;
 | 
						|
    virtual int getMinRadius() const = 0;
 | 
						|
 | 
						|
    virtual void setMaxRadius(int maxRadius) = 0;
 | 
						|
    virtual int getMaxRadius() const = 0;
 | 
						|
 | 
						|
    virtual void setMaxCircles(int maxCircles) = 0;
 | 
						|
    virtual int getMaxCircles() const = 0;
 | 
						|
};
 | 
						|
 | 
						|
CV_EXPORTS Ptr<HoughCirclesDetector> createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
 | 
						|
 | 
						|
//////////////////////////////////////
 | 
						|
// GeneralizedHough
 | 
						|
 | 
						|
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
 | 
						|
//! Detects position only without traslation and rotation
 | 
						|
CV_EXPORTS Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
 | 
						|
 | 
						|
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
 | 
						|
//! Detects position, traslation and rotation
 | 
						|
CV_EXPORTS Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
 | 
						|
 | 
						|
////////////////////////// Corners Detection ///////////////////////////
 | 
						|
 | 
						|
class CV_EXPORTS CornernessCriteria : public Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    virtual void compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
 | 
						|
};
 | 
						|
 | 
						|
//! computes Harris cornerness criteria at each image pixel
 | 
						|
CV_EXPORTS Ptr<CornernessCriteria> createHarrisCorner(int srcType, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
 | 
						|
 | 
						|
//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
 | 
						|
CV_EXPORTS Ptr<CornernessCriteria> createMinEigenValCorner(int srcType, int blockSize, int ksize, int borderType = BORDER_REFLECT101);
 | 
						|
 | 
						|
////////////////////////// Corners Detection ///////////////////////////
 | 
						|
 | 
						|
class CV_EXPORTS CornersDetector : public Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! return 1 rows matrix with CV_32FC2 type
 | 
						|
    virtual void detect(InputArray image, OutputArray corners, InputArray mask = noArray()) = 0;
 | 
						|
};
 | 
						|
 | 
						|
CV_EXPORTS Ptr<CornersDetector> createGoodFeaturesToTrackDetector(int srcType, int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
 | 
						|
                                                                  int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);
 | 
						|
 | 
						|
///////////////////////////// Mean Shift //////////////////////////////
 | 
						|
 | 
						|
//! Does mean shift filtering on GPU.
 | 
						|
CV_EXPORTS void meanShiftFiltering(InputArray src, OutputArray dst, int sp, int sr,
 | 
						|
                                   TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
 | 
						|
                                   Stream& stream = Stream::Null());
 | 
						|
 | 
						|
//! Does mean shift procedure on GPU.
 | 
						|
CV_EXPORTS void meanShiftProc(InputArray src, OutputArray dstr, OutputArray dstsp, int sp, int sr,
 | 
						|
                              TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
 | 
						|
                              Stream& stream = Stream::Null());
 | 
						|
 | 
						|
//! Does mean shift segmentation with elimination of small regions.
 | 
						|
CV_EXPORTS void meanShiftSegmentation(InputArray src, OutputArray dst, int sp, int sr, int minsize,
 | 
						|
                                      TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));
 | 
						|
 | 
						|
/////////////////////////// Match Template ////////////////////////////
 | 
						|
 | 
						|
//! computes the proximity map for the raster template and the image where the template is searched for
 | 
						|
class CV_EXPORTS TemplateMatching : public Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    virtual void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null()) = 0;
 | 
						|
};
 | 
						|
 | 
						|
CV_EXPORTS Ptr<TemplateMatching> createTemplateMatching(int srcType, int method, Size user_block_size = Size());
 | 
						|
 | 
						|
////////////////////////// Bilateral Filter ///////////////////////////
 | 
						|
 | 
						|
//! Performa bilateral filtering of passsed image
 | 
						|
CV_EXPORTS void bilateralFilter(InputArray src, OutputArray dst, int kernel_size, float sigma_color, float sigma_spatial,
 | 
						|
                                int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null());
 | 
						|
 | 
						|
///////////////////////////// Blending ////////////////////////////////
 | 
						|
 | 
						|
//! performs linear blending of two images
 | 
						|
//! to avoid accuracy errors sum of weigths shouldn't be very close to zero
 | 
						|
CV_EXPORTS void blendLinear(InputArray img1, InputArray img2, InputArray weights1, InputArray weights2,
 | 
						|
                            OutputArray result, Stream& stream = Stream::Null());
 | 
						|
 | 
						|
}} // namespace cv { namespace cuda {
 | 
						|
 | 
						|
#endif /* __OPENCV_CUDAIMGPROC_HPP__ */
 |