336 lines
15 KiB
C++
336 lines
15 KiB
C++
///////////////////////////////////////////////////////////////////////////////////////
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
|
|
// This is a implementation of the Logistic Regression algorithm in C++ in OpenCV.
|
|
|
|
// AUTHOR:
|
|
// Rahul Kavi rahulkavi[at]live[at]com
|
|
//
|
|
|
|
// contains a subset of data from the popular Iris Dataset (taken from "http://archive.ics.uci.edu/ml/datasets/Iris")
|
|
|
|
// # You are free to use, change, or redistribute the code in any way you wish for
|
|
// # non-commercial purposes, but please maintain the name of the original author.
|
|
// # This code comes with no warranty of any kind.
|
|
|
|
// #
|
|
// # You are free to use, change, or redistribute the code in any way you wish for
|
|
// # non-commercial purposes, but please maintain the name of the original author.
|
|
// # This code comes with no warranty of any kind.
|
|
|
|
// # Logistic Regression ALGORITHM
|
|
|
|
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace cv::ml;
|
|
|
|
static bool calculateError( const Mat& _p_labels, const Mat& _o_labels, float& error)
|
|
{
|
|
error = 0.0f;
|
|
float accuracy = 0.0f;
|
|
Mat _p_labels_temp;
|
|
Mat _o_labels_temp;
|
|
_p_labels.convertTo(_p_labels_temp, CV_32S);
|
|
_o_labels.convertTo(_o_labels_temp, CV_32S);
|
|
|
|
CV_Assert(_p_labels_temp.total() == _o_labels_temp.total());
|
|
CV_Assert(_p_labels_temp.rows == _o_labels_temp.rows);
|
|
|
|
accuracy = (float)cv::countNonZero(_p_labels_temp == _o_labels_temp)/_p_labels_temp.rows;
|
|
error = 1 - accuracy;
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------
|
|
|
|
class CV_LRTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
CV_LRTest() {}
|
|
protected:
|
|
virtual void run( int start_from );
|
|
};
|
|
|
|
void CV_LRTest::run( int /*start_from*/ )
|
|
{
|
|
// initialize varibles from the popular Iris Dataset
|
|
Mat data = (Mat_<double>(150, 4)<<
|
|
5.1,3.5,1.4,0.2, 4.9,3.0,1.4,0.2, 4.7,3.2,1.3,0.2, 4.6,3.1,1.5,0.2,
|
|
5.0,3.6,1.4,0.2, 5.4,3.9,1.7,0.4, 4.6,3.4,1.4,0.3, 5.0,3.4,1.5,0.2,
|
|
4.4,2.9,1.4,0.2, 4.9,3.1,1.5,0.1, 5.4,3.7,1.5,0.2, 4.8,3.4,1.6,0.2,
|
|
4.8,3.0,1.4,0.1, 4.3,3.0,1.1,0.1, 5.8,4.0,1.2,0.2, 5.7,4.4,1.5,0.4,
|
|
5.4,3.9,1.3,0.4, 5.1,3.5,1.4,0.3, 5.7,3.8,1.7,0.3, 5.1,3.8,1.5,0.3,
|
|
5.4,3.4,1.7,0.2, 5.1,3.7,1.5,0.4, 4.6,3.6,1.0,0.2, 5.1,3.3,1.7,0.5,
|
|
4.8,3.4,1.9,0.2, 5.0,3.0,1.6,0.2, 5.0,3.4,1.6,0.4, 5.2,3.5,1.5,0.2,
|
|
5.2,3.4,1.4,0.2, 4.7,3.2,1.6,0.2, 4.8,3.1,1.6,0.2, 5.4,3.4,1.5,0.4,
|
|
5.2,4.1,1.5,0.1, 5.5,4.2,1.4,0.2, 4.9,3.1,1.5,0.1, 5.0,3.2,1.2,0.2,
|
|
5.5,3.5,1.3,0.2, 4.9,3.1,1.5,0.1, 4.4,3.0,1.3,0.2, 5.1,3.4,1.5,0.2,
|
|
5.0,3.5,1.3,0.3, 4.5,2.3,1.3,0.3, 4.4,3.2,1.3,0.2, 5.0,3.5,1.6,0.6,
|
|
5.1,3.8,1.9,0.4, 4.8,3.0,1.4,0.3, 5.1,3.8,1.6,0.2, 4.6,3.2,1.4,0.2,
|
|
5.3,3.7,1.5,0.2, 5.0,3.3,1.4,0.2, 7.0,3.2,4.7,1.4, 6.4,3.2,4.5,1.5,
|
|
6.9,3.1,4.9,1.5, 5.5,2.3,4.0,1.3, 6.5,2.8,4.6,1.5, 5.7,2.8,4.5,1.3,
|
|
6.3,3.3,4.7,1.6, 4.9,2.4,3.3,1.0, 6.6,2.9,4.6,1.3, 5.2,2.7,3.9,1.4,
|
|
5.0,2.0,3.5,1.0, 5.9,3.0,4.2,1.5, 6.0,2.2,4.0,1.0, 6.1,2.9,4.7,1.4,
|
|
5.6,2.9,3.6,1.3, 6.7,3.1,4.4,1.4, 5.6,3.0,4.5,1.5, 5.8,2.7,4.1,1.0,
|
|
6.2,2.2,4.5,1.5, 5.6,2.5,3.9,1.1, 5.9,3.2,4.8,1.8, 6.1,2.8,4.0,1.3,
|
|
6.3,2.5,4.9,1.5, 6.1,2.8,4.7,1.2, 6.4,2.9,4.3,1.3, 6.6,3.0,4.4,1.4,
|
|
6.8,2.8,4.8,1.4, 6.7,3.0,5.0,1.7, 6.0,2.9,4.5,1.5, 5.7,2.6,3.5,1.0,
|
|
5.5,2.4,3.8,1.1, 5.5,2.4,3.7,1.0, 5.8,2.7,3.9,1.2, 6.0,2.7,5.1,1.6,
|
|
5.4,3.0,4.5,1.5, 6.0,3.4,4.5,1.6, 6.7,3.1,4.7,1.5, 6.3,2.3,4.4,1.3,
|
|
5.6,3.0,4.1,1.3, 5.5,2.5,4.0,1.3, 5.5,2.6,4.4,1.2, 6.1,3.0,4.6,1.4,
|
|
5.8,2.6,4.0,1.2, 5.0,2.3,3.3,1.0, 5.6,2.7,4.2,1.3, 5.7,3.0,4.2,1.2,
|
|
5.7,2.9,4.2,1.3, 6.2,2.9,4.3,1.3, 5.1,2.5,3.0,1.1, 5.7,2.8,4.1,1.3,
|
|
6.3,3.3,6.0,2.5, 5.8,2.7,5.1,1.9, 7.1,3.0,5.9,2.1, 6.3,2.9,5.6,1.8,
|
|
6.5,3.0,5.8,2.2, 7.6,3.0,6.6,2.1, 4.9,2.5,4.5,1.7, 7.3,2.9,6.3,1.8,
|
|
6.7,2.5,5.8,1.8, 7.2,3.6,6.1,2.5, 6.5,3.2,5.1,2.0, 6.4,2.7,5.3,1.9,
|
|
6.8,3.0,5.5,2.1, 5.7,2.5,5.0,2.0, 5.8,2.8,5.1,2.4, 6.4,3.2,5.3,2.3,
|
|
6.5,3.0,5.5,1.8, 7.7,3.8,6.7,2.2, 7.7,2.6,6.9,2.3, 6.0,2.2,5.0,1.5,
|
|
6.9,3.2,5.7,2.3, 5.6,2.8,4.9,2.0, 7.7,2.8,6.7,2.0, 6.3,2.7,4.9,1.8,
|
|
6.7,3.3,5.7,2.1, 7.2,3.2,6.0,1.8, 6.2,2.8,4.8,1.8, 6.1,3.0,4.9,1.8,
|
|
6.4,2.8,5.6,2.1, 7.2,3.0,5.8,1.6, 7.4,2.8,6.1,1.9, 7.9,3.8,6.4,2.0,
|
|
6.4,2.8,5.6,2.2, 6.3,2.8,5.1,1.5, 6.1,2.6,5.6,1.4, 7.7,3.0,6.1,2.3,
|
|
6.3,3.4,5.6,2.4, 6.4,3.1,5.5,1.8, 6.0,3.0,4.8,1.8, 6.9,3.1,5.4,2.1,
|
|
6.7,3.1,5.6,2.4, 6.9,3.1,5.1,2.3, 5.8,2.7,5.1,1.9, 6.8,3.2,5.9,2.3,
|
|
6.7,3.3,5.7,2.5, 6.7,3.0,5.2,2.3, 6.3,2.5,5.0,1.9, 6.5,3.0,5.2,2.0,
|
|
6.2,3.4,5.4,2.3, 5.9,3.0,5.1,1.8);
|
|
|
|
Mat labels = (Mat_<int>(150, 1)<< 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
3, 3, 3, 3, 3);
|
|
|
|
Mat responses1, responses2;
|
|
float error = 0.0f;
|
|
|
|
LogisticRegressionParams params1 = LogisticRegressionParams();
|
|
|
|
params1.alpha = 1.0;
|
|
params1.num_iters = 10001;
|
|
params1.norm = LogisticRegression::REG_L2;
|
|
params1.regularized = 1;
|
|
params1.train_method = LogisticRegression::BATCH;
|
|
params1.mini_batch_size = 10;
|
|
|
|
// run LR classifier train classifier
|
|
data.convertTo(data, CV_32FC1);
|
|
labels.convertTo(labels, CV_32FC1);
|
|
LogisticRegression lr1(data, labels, params1);
|
|
|
|
// predict using the same data
|
|
lr1.predict(data, responses1);
|
|
|
|
int test_code = cvtest::TS::OK;
|
|
|
|
// calculate error
|
|
if(!calculateError(responses1, labels, error))
|
|
{
|
|
ts->printf(cvtest::TS::LOG, "Bad prediction labels\n" );
|
|
test_code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
}
|
|
else if(error > 0.05f)
|
|
{
|
|
ts->printf(cvtest::TS::LOG, "Bad accuracy of (%f)\n", error);
|
|
test_code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
}
|
|
|
|
ts->set_failed_test_info(test_code);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------
|
|
class CV_LRTest_SaveLoad : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
CV_LRTest_SaveLoad(){}
|
|
protected:
|
|
virtual void run(int start_from);
|
|
};
|
|
|
|
|
|
void CV_LRTest_SaveLoad::run( int /*start_from*/ )
|
|
{
|
|
|
|
int code = cvtest::TS::OK;
|
|
|
|
// initialize varibles from the popular Iris Dataset
|
|
Mat data = (Mat_<double>(150, 4)<<
|
|
5.1,3.5,1.4,0.2, 4.9,3.0,1.4,0.2, 4.7,3.2,1.3,0.2, 4.6,3.1,1.5,0.2,
|
|
5.0,3.6,1.4,0.2, 5.4,3.9,1.7,0.4, 4.6,3.4,1.4,0.3, 5.0,3.4,1.5,0.2,
|
|
4.4,2.9,1.4,0.2, 4.9,3.1,1.5,0.1, 5.4,3.7,1.5,0.2, 4.8,3.4,1.6,0.2,
|
|
4.8,3.0,1.4,0.1, 4.3,3.0,1.1,0.1, 5.8,4.0,1.2,0.2, 5.7,4.4,1.5,0.4,
|
|
5.4,3.9,1.3,0.4, 5.1,3.5,1.4,0.3, 5.7,3.8,1.7,0.3, 5.1,3.8,1.5,0.3,
|
|
5.4,3.4,1.7,0.2, 5.1,3.7,1.5,0.4, 4.6,3.6,1.0,0.2, 5.1,3.3,1.7,0.5,
|
|
4.8,3.4,1.9,0.2, 5.0,3.0,1.6,0.2, 5.0,3.4,1.6,0.4, 5.2,3.5,1.5,0.2,
|
|
5.2,3.4,1.4,0.2, 4.7,3.2,1.6,0.2, 4.8,3.1,1.6,0.2, 5.4,3.4,1.5,0.4,
|
|
5.2,4.1,1.5,0.1, 5.5,4.2,1.4,0.2, 4.9,3.1,1.5,0.1, 5.0,3.2,1.2,0.2,
|
|
5.5,3.5,1.3,0.2, 4.9,3.1,1.5,0.1, 4.4,3.0,1.3,0.2, 5.1,3.4,1.5,0.2,
|
|
5.0,3.5,1.3,0.3, 4.5,2.3,1.3,0.3, 4.4,3.2,1.3,0.2, 5.0,3.5,1.6,0.6,
|
|
5.1,3.8,1.9,0.4, 4.8,3.0,1.4,0.3, 5.1,3.8,1.6,0.2, 4.6,3.2,1.4,0.2,
|
|
5.3,3.7,1.5,0.2, 5.0,3.3,1.4,0.2, 7.0,3.2,4.7,1.4, 6.4,3.2,4.5,1.5,
|
|
6.9,3.1,4.9,1.5, 5.5,2.3,4.0,1.3, 6.5,2.8,4.6,1.5, 5.7,2.8,4.5,1.3,
|
|
6.3,3.3,4.7,1.6, 4.9,2.4,3.3,1.0, 6.6,2.9,4.6,1.3, 5.2,2.7,3.9,1.4,
|
|
5.0,2.0,3.5,1.0, 5.9,3.0,4.2,1.5, 6.0,2.2,4.0,1.0, 6.1,2.9,4.7,1.4,
|
|
5.6,2.9,3.6,1.3, 6.7,3.1,4.4,1.4, 5.6,3.0,4.5,1.5, 5.8,2.7,4.1,1.0,
|
|
6.2,2.2,4.5,1.5, 5.6,2.5,3.9,1.1, 5.9,3.2,4.8,1.8, 6.1,2.8,4.0,1.3,
|
|
6.3,2.5,4.9,1.5, 6.1,2.8,4.7,1.2, 6.4,2.9,4.3,1.3, 6.6,3.0,4.4,1.4,
|
|
6.8,2.8,4.8,1.4, 6.7,3.0,5.0,1.7, 6.0,2.9,4.5,1.5, 5.7,2.6,3.5,1.0,
|
|
5.5,2.4,3.8,1.1, 5.5,2.4,3.7,1.0, 5.8,2.7,3.9,1.2, 6.0,2.7,5.1,1.6,
|
|
5.4,3.0,4.5,1.5, 6.0,3.4,4.5,1.6, 6.7,3.1,4.7,1.5, 6.3,2.3,4.4,1.3,
|
|
5.6,3.0,4.1,1.3, 5.5,2.5,4.0,1.3, 5.5,2.6,4.4,1.2, 6.1,3.0,4.6,1.4,
|
|
5.8,2.6,4.0,1.2, 5.0,2.3,3.3,1.0, 5.6,2.7,4.2,1.3, 5.7,3.0,4.2,1.2,
|
|
5.7,2.9,4.2,1.3, 6.2,2.9,4.3,1.3, 5.1,2.5,3.0,1.1, 5.7,2.8,4.1,1.3,
|
|
6.3,3.3,6.0,2.5, 5.8,2.7,5.1,1.9, 7.1,3.0,5.9,2.1, 6.3,2.9,5.6,1.8,
|
|
6.5,3.0,5.8,2.2, 7.6,3.0,6.6,2.1, 4.9,2.5,4.5,1.7, 7.3,2.9,6.3,1.8,
|
|
6.7,2.5,5.8,1.8, 7.2,3.6,6.1,2.5, 6.5,3.2,5.1,2.0, 6.4,2.7,5.3,1.9,
|
|
6.8,3.0,5.5,2.1, 5.7,2.5,5.0,2.0, 5.8,2.8,5.1,2.4, 6.4,3.2,5.3,2.3,
|
|
6.5,3.0,5.5,1.8, 7.7,3.8,6.7,2.2, 7.7,2.6,6.9,2.3, 6.0,2.2,5.0,1.5,
|
|
6.9,3.2,5.7,2.3, 5.6,2.8,4.9,2.0, 7.7,2.8,6.7,2.0, 6.3,2.7,4.9,1.8,
|
|
6.7,3.3,5.7,2.1, 7.2,3.2,6.0,1.8, 6.2,2.8,4.8,1.8, 6.1,3.0,4.9,1.8,
|
|
6.4,2.8,5.6,2.1, 7.2,3.0,5.8,1.6, 7.4,2.8,6.1,1.9, 7.9,3.8,6.4,2.0,
|
|
6.4,2.8,5.6,2.2, 6.3,2.8,5.1,1.5, 6.1,2.6,5.6,1.4, 7.7,3.0,6.1,2.3,
|
|
6.3,3.4,5.6,2.4, 6.4,3.1,5.5,1.8, 6.0,3.0,4.8,1.8, 6.9,3.1,5.4,2.1,
|
|
6.7,3.1,5.6,2.4, 6.9,3.1,5.1,2.3, 5.8,2.7,5.1,1.9, 6.8,3.2,5.9,2.3,
|
|
6.7,3.3,5.7,2.5, 6.7,3.0,5.2,2.3, 6.3,2.5,5.0,1.9, 6.5,3.0,5.2,2.0,
|
|
6.2,3.4,5.4,2.3, 5.9,3.0,5.1,1.8);
|
|
|
|
Mat labels = (Mat_<int>(150, 1)<< 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
3, 3, 3, 3, 3);
|
|
|
|
// LogisticRegressionParams params = LogisticRegressionParams();
|
|
|
|
Mat responses1, responses2;
|
|
Mat learnt_mat1, learnt_mat2;
|
|
Mat pred_result1, comp_learnt_mats;
|
|
|
|
float errorCount = 0.0;
|
|
|
|
LogisticRegressionParams params1 = LogisticRegressionParams();
|
|
LogisticRegressionParams params2 = LogisticRegressionParams();
|
|
|
|
params1.alpha = 1.0;
|
|
params1.num_iters = 10001;
|
|
params1.norm = LogisticRegression::REG_L2;
|
|
params1.regularized = 1;
|
|
params1.train_method = LogisticRegression::BATCH;
|
|
params1.mini_batch_size = 10;
|
|
|
|
data.convertTo(data, CV_32FC1);
|
|
labels.convertTo(labels, CV_32FC1);
|
|
|
|
// run LR classifier train classifier
|
|
LogisticRegression lr1(data, labels, params1);
|
|
LogisticRegression lr2(params2);
|
|
learnt_mat1 = lr1.get_learnt_thetas();
|
|
|
|
lr1.predict(data, responses1);
|
|
// now save the classifier
|
|
|
|
string filename = cv::tempfile(".xml");
|
|
try
|
|
{
|
|
//lr1.save(filename.c_str());
|
|
FileStorage fs;
|
|
fs.open(filename.c_str(),FileStorage::WRITE);
|
|
lr1.write(fs);
|
|
fs.release();
|
|
}
|
|
|
|
catch(...)
|
|
{
|
|
ts->printf(cvtest::TS::LOG, "Crash in write method.\n" );
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
|
|
}
|
|
|
|
try
|
|
{
|
|
//lr2.load(filename.c_str());
|
|
FileStorage fs;
|
|
fs.open(filename.c_str(),FileStorage::READ);
|
|
FileNode fn = fs.root();
|
|
lr2.read(fn);
|
|
fs.release();
|
|
}
|
|
|
|
catch(...)
|
|
{
|
|
ts->printf(cvtest::TS::LOG, "Crash in read method.\n");
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
|
|
}
|
|
|
|
lr2.predict(data, responses2);
|
|
|
|
learnt_mat2 = lr2.get_learnt_thetas();
|
|
|
|
CV_Assert(responses1.rows == responses2.rows);
|
|
|
|
// compare difference in learnt matrices before and after loading from disk
|
|
comp_learnt_mats = (learnt_mat1 == learnt_mat2);
|
|
comp_learnt_mats = comp_learnt_mats.reshape(1, comp_learnt_mats.rows*comp_learnt_mats.cols);
|
|
comp_learnt_mats.convertTo(comp_learnt_mats, CV_32S);
|
|
comp_learnt_mats = comp_learnt_mats/255;
|
|
|
|
// compare difference in prediction outputs and stored inputs
|
|
// check if there is any difference between computed learnt mat and retreived mat
|
|
|
|
errorCount += 1 - (float)cv::countNonZero(responses1 == responses2)/responses1.rows;
|
|
errorCount += 1 - (float)cv::sum(comp_learnt_mats)[0]/comp_learnt_mats.rows;
|
|
|
|
if(errorCount>0)
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Different prediction results before writing and after reading (errorCount=%d).\n", errorCount );
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
}
|
|
|
|
remove( filename.c_str() );
|
|
|
|
ts->set_failed_test_info( code );
|
|
}
|
|
|
|
TEST(ML_LR, accuracy) { CV_LRTest test; test.safe_run(); }
|
|
TEST(ML_LR, save_load) { CV_LRTest_SaveLoad test; test.safe_run(); }
|