295 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			295 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#include "test_precomp.hpp"
 | 
						|
#include "opencv2/ts/ocl_test.hpp"
 | 
						|
 | 
						|
class AllignedFrameSource : public cv::superres::FrameSource
 | 
						|
{
 | 
						|
public:
 | 
						|
    AllignedFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale);
 | 
						|
 | 
						|
    void nextFrame(cv::OutputArray frame);
 | 
						|
    void reset();
 | 
						|
 | 
						|
private:
 | 
						|
    cv::Ptr<cv::superres::FrameSource> base_;
 | 
						|
 | 
						|
    cv::Mat origFrame_;
 | 
						|
    int scale_;
 | 
						|
};
 | 
						|
 | 
						|
AllignedFrameSource::AllignedFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale) :
 | 
						|
    base_(base), scale_(scale)
 | 
						|
{
 | 
						|
    CV_Assert( base_ );
 | 
						|
}
 | 
						|
 | 
						|
void AllignedFrameSource::nextFrame(cv::OutputArray frame)
 | 
						|
{
 | 
						|
    base_->nextFrame(origFrame_);
 | 
						|
 | 
						|
    if (origFrame_.rows % scale_ == 0 && origFrame_.cols % scale_ == 0)
 | 
						|
        cv::superres::arrCopy(origFrame_, frame);
 | 
						|
    else
 | 
						|
    {
 | 
						|
        cv::Rect ROI(0, 0, (origFrame_.cols / scale_) * scale_, (origFrame_.rows / scale_) * scale_);
 | 
						|
        cv::superres::arrCopy(origFrame_(ROI), frame);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void AllignedFrameSource::reset()
 | 
						|
{
 | 
						|
    base_->reset();
 | 
						|
}
 | 
						|
 | 
						|
class DegradeFrameSource : public cv::superres::FrameSource
 | 
						|
{
 | 
						|
public:
 | 
						|
    DegradeFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale);
 | 
						|
 | 
						|
    void nextFrame(cv::OutputArray frame);
 | 
						|
    void reset();
 | 
						|
 | 
						|
private:
 | 
						|
    cv::Ptr<cv::superres::FrameSource> base_;
 | 
						|
 | 
						|
    cv::Mat origFrame_;
 | 
						|
    cv::Mat blurred_;
 | 
						|
    cv::Mat deg_;
 | 
						|
    double iscale_;
 | 
						|
};
 | 
						|
 | 
						|
DegradeFrameSource::DegradeFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale) :
 | 
						|
    base_(base), iscale_(1.0 / scale)
 | 
						|
{
 | 
						|
    CV_Assert( base_ );
 | 
						|
}
 | 
						|
 | 
						|
static void addGaussNoise(cv::OutputArray _image, double sigma)
 | 
						|
{
 | 
						|
    int type = _image.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
 | 
						|
    cv::Mat noise(_image.size(), CV_32FC(cn));
 | 
						|
    cvtest::TS::ptr()->get_rng().fill(noise, cv::RNG::NORMAL, 0.0, sigma);
 | 
						|
 | 
						|
    cv::addWeighted(_image, 1.0, noise, 1.0, 0.0, _image, depth);
 | 
						|
}
 | 
						|
 | 
						|
static void addSpikeNoise(cv::OutputArray _image, int frequency)
 | 
						|
{
 | 
						|
    cv::Mat_<uchar> mask(_image.size(), 0);
 | 
						|
 | 
						|
    for (int y = 0; y < mask.rows; ++y)
 | 
						|
        for (int x = 0; x < mask.cols; ++x)
 | 
						|
            if (cvtest::TS::ptr()->get_rng().uniform(0, frequency) < 1)
 | 
						|
                mask(y, x) = 255;
 | 
						|
 | 
						|
    _image.setTo(cv::Scalar::all(255), mask);
 | 
						|
}
 | 
						|
 | 
						|
void DegradeFrameSource::nextFrame(cv::OutputArray frame)
 | 
						|
{
 | 
						|
    base_->nextFrame(origFrame_);
 | 
						|
 | 
						|
    cv::GaussianBlur(origFrame_, blurred_, cv::Size(5, 5), 0);
 | 
						|
    cv::resize(blurred_, deg_, cv::Size(), iscale_, iscale_, cv::INTER_NEAREST);
 | 
						|
 | 
						|
    addGaussNoise(deg_, 10.0);
 | 
						|
    addSpikeNoise(deg_, 500);
 | 
						|
 | 
						|
    cv::superres::arrCopy(deg_, frame);
 | 
						|
}
 | 
						|
 | 
						|
void DegradeFrameSource::reset()
 | 
						|
{
 | 
						|
    base_->reset();
 | 
						|
}
 | 
						|
 | 
						|
double MSSIM(cv::InputArray _i1, cv::InputArray _i2)
 | 
						|
{
 | 
						|
    const double C1 = 6.5025;
 | 
						|
    const double C2 = 58.5225;
 | 
						|
 | 
						|
    const int depth = CV_32F;
 | 
						|
 | 
						|
    cv::Mat I1, I2;
 | 
						|
    _i1.getMat().convertTo(I1, depth);
 | 
						|
    _i2.getMat().convertTo(I2, depth);
 | 
						|
 | 
						|
    cv::Mat I2_2  = I2.mul(I2); // I2^2
 | 
						|
    cv::Mat I1_2  = I1.mul(I1); // I1^2
 | 
						|
    cv::Mat I1_I2 = I1.mul(I2); // I1 * I2
 | 
						|
 | 
						|
    cv::Mat mu1, mu2;
 | 
						|
    cv::GaussianBlur(I1, mu1, cv::Size(11, 11), 1.5);
 | 
						|
    cv::GaussianBlur(I2, mu2, cv::Size(11, 11), 1.5);
 | 
						|
 | 
						|
    cv::Mat mu1_2   = mu1.mul(mu1);
 | 
						|
    cv::Mat mu2_2   = mu2.mul(mu2);
 | 
						|
    cv::Mat mu1_mu2 = mu1.mul(mu2);
 | 
						|
 | 
						|
    cv::Mat sigma1_2, sigma2_2, sigma12;
 | 
						|
 | 
						|
    cv::GaussianBlur(I1_2, sigma1_2, cv::Size(11, 11), 1.5);
 | 
						|
    sigma1_2 -= mu1_2;
 | 
						|
 | 
						|
    cv::GaussianBlur(I2_2, sigma2_2, cv::Size(11, 11), 1.5);
 | 
						|
    sigma2_2 -= mu2_2;
 | 
						|
 | 
						|
    cv::GaussianBlur(I1_I2, sigma12, cv::Size(11, 11), 1.5);
 | 
						|
    sigma12 -= mu1_mu2;
 | 
						|
 | 
						|
    cv::Mat t1, t2;
 | 
						|
    cv::Mat numerator;
 | 
						|
    cv::Mat denominator;
 | 
						|
 | 
						|
    // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
 | 
						|
    t1 = 2 * mu1_mu2 + C1;
 | 
						|
    t2 = 2 * sigma12 + C2;
 | 
						|
    numerator = t1.mul(t2);
 | 
						|
 | 
						|
    // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
 | 
						|
    t1 = mu1_2 + mu2_2 + C1;
 | 
						|
    t2 = sigma1_2 + sigma2_2 + C2;
 | 
						|
    denominator = t1.mul(t2);
 | 
						|
 | 
						|
    // ssim_map =  numerator./denominator;
 | 
						|
    cv::Mat ssim_map;
 | 
						|
    cv::divide(numerator, denominator, ssim_map);
 | 
						|
 | 
						|
    // mssim = average of ssim map
 | 
						|
    cv::Scalar mssim = cv::mean(ssim_map);
 | 
						|
 | 
						|
    if (_i1.channels() == 1)
 | 
						|
        return mssim[0];
 | 
						|
 | 
						|
    return (mssim[0] + mssim[1] + mssim[3]) / 3;
 | 
						|
}
 | 
						|
 | 
						|
class SuperResolution : public testing::Test
 | 
						|
{
 | 
						|
public:
 | 
						|
    template <typename T>
 | 
						|
    void RunTest(cv::Ptr<cv::superres::SuperResolution> superRes);
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void SuperResolution::RunTest(cv::Ptr<cv::superres::SuperResolution> superRes)
 | 
						|
{
 | 
						|
    const std::string inputVideoName = cvtest::TS::ptr()->get_data_path() + "car.avi";
 | 
						|
    const int scale = 2;
 | 
						|
    const int iterations = 100;
 | 
						|
    const int temporalAreaRadius = 2;
 | 
						|
 | 
						|
    ASSERT_FALSE( superRes.empty() );
 | 
						|
 | 
						|
    const int btvKernelSize = superRes->getInt("btvKernelSize");
 | 
						|
 | 
						|
    superRes->set("scale", scale);
 | 
						|
    superRes->set("iterations", iterations);
 | 
						|
    superRes->set("temporalAreaRadius", temporalAreaRadius);
 | 
						|
 | 
						|
    cv::Ptr<cv::superres::FrameSource> goldSource(new AllignedFrameSource(cv::superres::createFrameSource_Video(inputVideoName), scale));
 | 
						|
    cv::Ptr<cv::superres::FrameSource> lowResSource(new DegradeFrameSource(
 | 
						|
        cv::makePtr<AllignedFrameSource>(cv::superres::createFrameSource_Video(inputVideoName), scale), scale));
 | 
						|
 | 
						|
    // skip first frame
 | 
						|
    cv::Mat frame;
 | 
						|
 | 
						|
    lowResSource->nextFrame(frame);
 | 
						|
    goldSource->nextFrame(frame);
 | 
						|
 | 
						|
    cv::Rect inner(btvKernelSize, btvKernelSize, frame.cols - 2 * btvKernelSize, frame.rows - 2 * btvKernelSize);
 | 
						|
 | 
						|
    superRes->setInput(lowResSource);
 | 
						|
 | 
						|
    double srAvgMSSIM = 0.0;
 | 
						|
    const int count = 10;
 | 
						|
 | 
						|
    cv::Mat goldFrame;
 | 
						|
    T superResFrame;
 | 
						|
    for (int i = 0; i < count; ++i)
 | 
						|
    {
 | 
						|
        goldSource->nextFrame(goldFrame);
 | 
						|
        ASSERT_FALSE( goldFrame.empty() );
 | 
						|
 | 
						|
        superRes->nextFrame(superResFrame);
 | 
						|
        ASSERT_FALSE( superResFrame.empty() );
 | 
						|
 | 
						|
        const double srMSSIM = MSSIM(goldFrame(inner), superResFrame);
 | 
						|
 | 
						|
        srAvgMSSIM += srMSSIM;
 | 
						|
    }
 | 
						|
 | 
						|
    srAvgMSSIM /= count;
 | 
						|
 | 
						|
    EXPECT_GE( srAvgMSSIM, 0.5 );
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(SuperResolution, BTVL1)
 | 
						|
{
 | 
						|
    RunTest<cv::Mat>(cv::superres::createSuperResolution_BTVL1());
 | 
						|
}
 | 
						|
 | 
						|
#if defined(HAVE_CUDA) && defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING) && defined(HAVE_OPENCV_CUDAFILTERS)
 | 
						|
 | 
						|
TEST_F(SuperResolution, BTVL1_CUDA)
 | 
						|
{
 | 
						|
    RunTest<cv::Mat>(cv::superres::createSuperResolution_BTVL1_CUDA());
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef HAVE_OPENCL
 | 
						|
 | 
						|
namespace cvtest {
 | 
						|
namespace ocl {
 | 
						|
 | 
						|
OCL_TEST_F(SuperResolution, BTVL1)
 | 
						|
{
 | 
						|
    RunTest<cv::UMat>(cv::superres::createSuperResolution_BTVL1());
 | 
						|
}
 | 
						|
 | 
						|
} } // namespace cvtest::ocl
 | 
						|
 | 
						|
#endif
 |