141 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			141 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "perf_precomp.hpp"
 | |
| #include "opencv2/core/internal.hpp"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| using namespace perf;
 | |
| using std::tr1::make_tuple;
 | |
| using std::tr1::get;
 | |
| 
 | |
| CV_ENUM(pnpAlgo, CV_ITERATIVE, CV_EPNP /*, CV_P3P*/)
 | |
| 
 | |
| typedef std::tr1::tuple<int, pnpAlgo> PointsNum_Algo_t;
 | |
| typedef perf::TestBaseWithParam<PointsNum_Algo_t> PointsNum_Algo;
 | |
| 
 | |
| typedef perf::TestBaseWithParam<int> PointsNum;
 | |
| 
 | |
| PERF_TEST_P(PointsNum_Algo, solvePnP,
 | |
|             testing::Combine(
 | |
|                 testing::Values(/*4,*/ 3*9, 7*13), //TODO: find why results on 4 points are too unstable
 | |
|                 testing::Values((int)CV_ITERATIVE, (int)CV_EPNP)
 | |
|                 )
 | |
|             )
 | |
| {
 | |
|     int pointsNum = get<0>(GetParam());
 | |
|     pnpAlgo algo = get<1>(GetParam());
 | |
| 
 | |
|     vector<Point2f> points2d(pointsNum);
 | |
|     vector<Point3f> points3d(pointsNum);
 | |
|     Mat rvec = Mat::zeros(3, 1, CV_32FC1);
 | |
|     Mat tvec = Mat::zeros(3, 1, CV_32FC1);
 | |
| 
 | |
|     Mat distortion = Mat::zeros(5, 1, CV_32FC1);
 | |
|     Mat intrinsics = Mat::eye(3, 3, CV_32FC1);
 | |
|     intrinsics.at<float> (0, 0) = 400.0;
 | |
|     intrinsics.at<float> (1, 1) = 400.0;
 | |
|     intrinsics.at<float> (0, 2) = 640 / 2;
 | |
|     intrinsics.at<float> (1, 2) = 480 / 2;
 | |
| 
 | |
|     warmup(points3d, WARMUP_RNG);
 | |
|     warmup(rvec, WARMUP_RNG);
 | |
|     warmup(tvec, WARMUP_RNG);
 | |
| 
 | |
|     projectPoints(points3d, rvec, tvec, intrinsics, distortion, points2d);
 | |
| 
 | |
|     //add noise
 | |
|     Mat noise(1, (int)points2d.size(), CV_32FC2);
 | |
|     randu(noise, 0, 0.01);
 | |
|     add(points2d, noise, points2d);
 | |
| 
 | |
|     declare.in(points3d, points2d);
 | |
| 
 | |
|     TEST_CYCLE_N(1000)
 | |
|     {
 | |
|         solvePnP(points3d, points2d, intrinsics, distortion, rvec, tvec, false, algo);
 | |
|     }
 | |
| 
 | |
|     SANITY_CHECK(rvec, 1e-6);
 | |
|     SANITY_CHECK(tvec, 1e-3);
 | |
| }
 | |
| 
 | |
| PERF_TEST(PointsNum_Algo, solveP3P)
 | |
| {
 | |
|     int pointsNum = 4;
 | |
| 
 | |
|     vector<Point2f> points2d(pointsNum);
 | |
|     vector<Point3f> points3d(pointsNum);
 | |
|     Mat rvec = Mat::zeros(3, 1, CV_32FC1);
 | |
|     Mat tvec = Mat::zeros(3, 1, CV_32FC1);
 | |
| 
 | |
|     Mat distortion = Mat::zeros(5, 1, CV_32FC1);
 | |
|     Mat intrinsics = Mat::eye(3, 3, CV_32FC1);
 | |
|     intrinsics.at<float> (0, 0) = 400.0;
 | |
|     intrinsics.at<float> (1, 1) = 400.0;
 | |
|     intrinsics.at<float> (0, 2) = 640 / 2;
 | |
|     intrinsics.at<float> (1, 2) = 480 / 2;
 | |
| 
 | |
|     warmup(points3d, WARMUP_RNG);
 | |
|     warmup(rvec, WARMUP_RNG);
 | |
|     warmup(tvec, WARMUP_RNG);
 | |
| 
 | |
|     projectPoints(points3d, rvec, tvec, intrinsics, distortion, points2d);
 | |
| 
 | |
|     //add noise
 | |
|     Mat noise(1, (int)points2d.size(), CV_32FC2);
 | |
|     randu(noise, 0, 0.01);
 | |
|     add(points2d, noise, points2d);
 | |
| 
 | |
|     declare.in(points3d, points2d);
 | |
|     declare.time(100);
 | |
| 
 | |
|     TEST_CYCLE_N(1000)
 | |
|     {
 | |
|         solvePnP(points3d, points2d, intrinsics, distortion, rvec, tvec, false, CV_P3P);
 | |
|     }
 | |
| 
 | |
|     SANITY_CHECK(rvec, 1e-6);
 | |
|     SANITY_CHECK(tvec, 1e-6);
 | |
| }
 | |
| 
 | |
| PERF_TEST_P(PointsNum, DISABLED_SolvePnPRansac, testing::Values(4, 3*9, 7*13))
 | |
| {
 | |
|     int count = GetParam();
 | |
| 
 | |
|     Mat object(1, count, CV_32FC3);
 | |
|     randu(object, -100, 100);
 | |
| 
 | |
|     Mat camera_mat(3, 3, CV_32FC1);
 | |
|     randu(camera_mat, 0.5, 1);
 | |
|     camera_mat.at<float>(0, 1) = 0.f;
 | |
|     camera_mat.at<float>(1, 0) = 0.f;
 | |
|     camera_mat.at<float>(2, 0) = 0.f;
 | |
|     camera_mat.at<float>(2, 1) = 0.f;
 | |
| 
 | |
|     Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0));
 | |
| 
 | |
|     vector<cv::Point2f> image_vec;
 | |
|     Mat rvec_gold(1, 3, CV_32FC1);
 | |
|     randu(rvec_gold, 0, 1);
 | |
|     Mat tvec_gold(1, 3, CV_32FC1);
 | |
|     randu(tvec_gold, 0, 1);
 | |
|     projectPoints(object, rvec_gold, tvec_gold, camera_mat, dist_coef, image_vec);
 | |
| 
 | |
|     Mat image(1, count, CV_32FC2, &image_vec[0]);
 | |
| 
 | |
|     Mat rvec;
 | |
|     Mat tvec;
 | |
| 
 | |
| #ifdef HAVE_TBB
 | |
|     // limit concurrency to get deterministic result
 | |
|     cv::Ptr<tbb::task_scheduler_init> one_thread = new tbb::task_scheduler_init(1);
 | |
| #endif
 | |
| 
 | |
|     TEST_CYCLE()
 | |
|     {
 | |
|         solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
 | |
|     }
 | |
| 
 | |
|     SANITY_CHECK(rvec, 1e-6);
 | |
|     SANITY_CHECK(tvec, 1e-6);
 | |
| }
 | 
