257 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			257 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
 | |
| // Digital Ltd. LLC
 | |
| //
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| // *       Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| // *       Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| // *       Neither the name of Industrial Light & Magic nor the names of
 | |
| // its contributors may be used to endorse or promote products derived
 | |
| // from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| ///////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifndef INCLUDED_IMATHPLANE_H
 | |
| #define INCLUDED_IMATHPLANE_H
 | |
| 
 | |
| //----------------------------------------------------------------------
 | |
| //
 | |
| //	template class Plane3
 | |
| //
 | |
| //	The Imath::Plane3<> class represents a half space, so the
 | |
| //	normal may point either towards or away from origin.  The
 | |
| //	plane P can be represented by Imath::Plane3 as either p or -p
 | |
| //	corresponding to the two half-spaces on either side of the
 | |
| //	plane. Any function which computes a distance will return
 | |
| //	either negative or positive values for the distance indicating
 | |
| //	which half-space the point is in. Note that reflection, and
 | |
| //	intersection functions will operate as expected.
 | |
| //
 | |
| //----------------------------------------------------------------------
 | |
| 
 | |
| #include "ImathVec.h"
 | |
| #include "ImathLine.h"
 | |
| 
 | |
| namespace Imath {
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| class Plane3
 | |
| {
 | |
|   public:
 | |
| 
 | |
|     Vec3<T>			normal;
 | |
|     T				distance;
 | |
| 
 | |
|     Plane3() {}
 | |
|     Plane3(const Vec3<T> &normal, T distance);
 | |
|     Plane3(const Vec3<T> &point, const Vec3<T> &normal);
 | |
|     Plane3(const Vec3<T> &point1,
 | |
|        const Vec3<T> &point2,
 | |
|        const Vec3<T> &point3);
 | |
| 
 | |
|     //----------------------
 | |
|     //	Various set methods
 | |
|     //----------------------
 | |
| 
 | |
|     void                        set(const Vec3<T> &normal,
 | |
|                     T distance);
 | |
| 
 | |
|     void                        set(const Vec3<T> &point,
 | |
|                     const Vec3<T> &normal);
 | |
| 
 | |
|     void                        set(const Vec3<T> &point1,
 | |
|                     const Vec3<T> &point2,
 | |
|                     const Vec3<T> &point3 );
 | |
| 
 | |
|     //----------------------
 | |
|     //	Utilities
 | |
|     //----------------------
 | |
| 
 | |
|     bool                        intersect(const Line3<T> &line,
 | |
|                                           Vec3<T> &intersection) const;
 | |
| 
 | |
|     bool                        intersectT(const Line3<T> &line,
 | |
|                        T ¶meter) const;
 | |
| 
 | |
|     T				distanceTo(const Vec3<T> &) const;
 | |
| 
 | |
|     Vec3<T>                     reflectPoint(const Vec3<T> &) const;
 | |
|     Vec3<T>                     reflectVector(const Vec3<T> &) const;
 | |
| };
 | |
| 
 | |
| 
 | |
| //--------------------
 | |
| // Convenient typedefs
 | |
| //--------------------
 | |
| 
 | |
| typedef Plane3<float> Plane3f;
 | |
| typedef Plane3<double> Plane3d;
 | |
| 
 | |
| 
 | |
| //---------------
 | |
| // Implementation
 | |
| //---------------
 | |
| 
 | |
| template <class T>
 | |
| inline Plane3<T>::Plane3(const Vec3<T> &p0,
 | |
|              const Vec3<T> &p1,
 | |
|              const Vec3<T> &p2)
 | |
| {
 | |
|     set(p0,p1,p2);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Plane3<T>::Plane3(const Vec3<T> &n, T d)
 | |
| {
 | |
|     set(n, d);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Plane3<T>::Plane3(const Vec3<T> &p, const Vec3<T> &n)
 | |
| {
 | |
|     set(p, n);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline void Plane3<T>::set(const Vec3<T>& point1,
 | |
|                const Vec3<T>& point2,
 | |
|                const Vec3<T>& point3)
 | |
| {
 | |
|     normal = (point2 - point1) % (point3 - point1);
 | |
|     normal.normalize();
 | |
|     distance = normal ^ point1;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline void Plane3<T>::set(const Vec3<T>& point, const Vec3<T>& n)
 | |
| {
 | |
|     normal = n;
 | |
|     normal.normalize();
 | |
|     distance = normal ^ point;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline void Plane3<T>::set(const Vec3<T>& n, T d)
 | |
| {
 | |
|     normal = n;
 | |
|     normal.normalize();
 | |
|     distance = d;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T Plane3<T>::distanceTo(const Vec3<T> &point) const
 | |
| {
 | |
|     return (point ^ normal) - distance;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline Vec3<T> Plane3<T>::reflectPoint(const Vec3<T> &point) const
 | |
| {
 | |
|     return normal * distanceTo(point) * -2.0 + point;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| inline Vec3<T> Plane3<T>::reflectVector(const Vec3<T> &v) const
 | |
| {
 | |
|     return normal * (normal ^ v)  * 2.0 - v;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| inline bool Plane3<T>::intersect(const Line3<T>& line, Vec3<T>& point) const
 | |
| {
 | |
|     T d = normal ^ line.dir;
 | |
|     if ( d == 0.0 ) return false;
 | |
|     T t = - ((normal ^ line.pos) - distance) /  d;
 | |
|     point = line(t);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline bool Plane3<T>::intersectT(const Line3<T>& line, T &t) const
 | |
| {
 | |
|     T d = normal ^ line.dir;
 | |
|     if ( d == 0.0 ) return false;
 | |
|     t = - ((normal ^ line.pos) - distance) /  d;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template<class T>
 | |
| std::ostream &operator<< (std::ostream &o, const Plane3<T> &plane)
 | |
| {
 | |
|     return o << "(" << plane.normal << ", " << plane.distance
 | |
|          << ")";
 | |
| }
 | |
| 
 | |
| template<class T>
 | |
| Plane3<T> operator* (const Plane3<T> &plane, const Matrix44<T> &M)
 | |
| {
 | |
|     //                        T
 | |
|     //	                    -1
 | |
|     //	Could also compute M    but that would suck.
 | |
|     //
 | |
| 
 | |
|     Vec3<T> dir1   = Vec3<T> (1, 0, 0) % plane.normal;
 | |
|     T dir1Len      = dir1 ^ dir1;
 | |
| 
 | |
|     Vec3<T> tmp    = Vec3<T> (0, 1, 0) % plane.normal;
 | |
|     T tmpLen       = tmp ^ tmp;
 | |
| 
 | |
|     if (tmpLen > dir1Len)
 | |
|     {
 | |
|     dir1      = tmp;
 | |
|     dir1Len   = tmpLen;
 | |
|     }
 | |
| 
 | |
|     tmp            = Vec3<T> (0, 0, 1) % plane.normal;
 | |
|     tmpLen         = tmp ^ tmp;
 | |
| 
 | |
|     if (tmpLen > dir1Len)
 | |
|     {
 | |
|     dir1      = tmp;
 | |
|     }
 | |
| 
 | |
|     Vec3<T> dir2   = dir1 % plane.normal;
 | |
|     Vec3<T> point  = plane.distance * plane.normal;
 | |
| 
 | |
|     return Plane3<T> ( point         * M,
 | |
|               (point + dir2) * M,
 | |
|               (point + dir1) * M );
 | |
| }
 | |
| 
 | |
| template<class T>
 | |
| Plane3<T> operator- (const Plane3<T> &plane)
 | |
| {
 | |
|     return Plane3<T>(-plane.normal,-plane.distance);
 | |
| }
 | |
| 
 | |
| 
 | |
| } // namespace Imath
 | |
| 
 | |
| #endif
 | 
