300 lines
9.1 KiB
C++
300 lines
9.1 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "cvtest.h"
|
|
|
|
static const char* accum_param_names[] = { "size", "channels", "depth", "use_mask", 0 };
|
|
static const CvSize accum_sizes[] = {{30,30}, {320, 240}, {720,480}, {-1,-1}};
|
|
static const CvSize accum_whole_sizes[] = {{320,240}, {320, 240}, {720,480}, {-1,-1}};
|
|
static const int accum_depths[] = { CV_8U, CV_32F, CV_64F, -1 };
|
|
static const int accum_channels[] = { 1, 3, -1 };
|
|
|
|
class CV_AccumBaseTestImpl : public CvArrTest
|
|
{
|
|
public:
|
|
CV_AccumBaseTestImpl( const char* test_name, const char* test_funcs );
|
|
|
|
protected:
|
|
void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types );
|
|
double get_success_error_level( int test_case_idx, int i, int j );
|
|
void get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types,
|
|
CvSize** whole_sizes, bool *are_images );
|
|
double alpha;
|
|
};
|
|
|
|
|
|
CV_AccumBaseTestImpl::CV_AccumBaseTestImpl( const char* test_name, const char* test_funcs )
|
|
: CvArrTest( test_name, test_funcs, "" )
|
|
{
|
|
test_array[INPUT].push(NULL);
|
|
test_array[INPUT_OUTPUT].push(NULL);
|
|
test_array[REF_INPUT_OUTPUT].push(NULL);
|
|
test_array[TEMP].push(NULL);
|
|
test_array[MASK].push(NULL);
|
|
optional_mask = true;
|
|
element_wise_relative_error = false;
|
|
|
|
default_timing_param_names = 0;
|
|
depth_list = accum_depths;
|
|
size_list = accum_sizes;
|
|
whole_size_list = accum_whole_sizes;
|
|
cn_list = accum_channels;
|
|
}
|
|
|
|
|
|
void CV_AccumBaseTestImpl::get_test_array_types_and_sizes( int test_case_idx,
|
|
CvSize** sizes, int** types )
|
|
{
|
|
CvRNG* rng = ts->get_rng();
|
|
int depth = cvTsRandInt(rng) % 3, cn = cvTsRandInt(rng) & 1 ? 3 : 1;
|
|
int accdepth = std::max((int)(cvTsRandInt(rng) % 2 + 1), depth);
|
|
int i, input_count = test_array[INPUT].size();
|
|
CvArrTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
|
depth = depth == 0 ? CV_8U : depth == 1 ? CV_32F : CV_64F;
|
|
accdepth = accdepth == 1 ? CV_32F : CV_64F;
|
|
accdepth = MAX(accdepth, depth);
|
|
|
|
for( i = 0; i < input_count; i++ )
|
|
types[INPUT][i] = CV_MAKETYPE(depth,cn);
|
|
types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = types[TEMP][0] = CV_MAKETYPE(accdepth,cn);
|
|
|
|
alpha = cvTsRandReal(rng);
|
|
}
|
|
|
|
|
|
double CV_AccumBaseTestImpl::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
|
{
|
|
return CV_MAT_DEPTH(test_mat[INPUT_OUTPUT][0].type) < CV_64F ||
|
|
CV_MAT_DEPTH(test_mat[INPUT][0].type) == CV_32F ? FLT_EPSILON*100 : DBL_EPSILON*1000;
|
|
}
|
|
|
|
|
|
void CV_AccumBaseTestImpl::get_timing_test_array_types_and_sizes( int test_case_idx,
|
|
CvSize** sizes, int** types, CvSize** whole_sizes, bool *are_images )
|
|
{
|
|
CvArrTest::get_timing_test_array_types_and_sizes( test_case_idx, sizes, types,
|
|
whole_sizes, are_images );
|
|
types[INPUT_OUTPUT][0] = CV_MAKETYPE(MAX(CV_32F, CV_MAT_DEPTH(types[INPUT][0])),
|
|
CV_MAT_CN(types[INPUT][0]));
|
|
alpha = 0.333333333333333;
|
|
}
|
|
|
|
|
|
CV_AccumBaseTestImpl accum_base( "accum", "" );
|
|
|
|
|
|
class CV_AccumBaseTest : public CV_AccumBaseTestImpl
|
|
{
|
|
public:
|
|
CV_AccumBaseTest( const char* test_name, const char* test_funcs );
|
|
};
|
|
|
|
|
|
CV_AccumBaseTest::CV_AccumBaseTest( const char* test_name, const char* test_funcs )
|
|
: CV_AccumBaseTestImpl( test_name, test_funcs )
|
|
{
|
|
depth_list = 0;
|
|
size_list = 0;
|
|
whole_size_list = 0;
|
|
cn_list = 0;
|
|
|
|
default_timing_param_names = accum_param_names;
|
|
}
|
|
|
|
|
|
/// acc
|
|
class CV_AccTest : public CV_AccumBaseTest
|
|
{
|
|
public:
|
|
CV_AccTest();
|
|
protected:
|
|
void run_func();
|
|
void prepare_to_validation( int );
|
|
};
|
|
|
|
CV_AccTest::CV_AccTest()
|
|
: CV_AccumBaseTest( "accum-acc", "cvAcc" )
|
|
{
|
|
}
|
|
|
|
|
|
void CV_AccTest::run_func()
|
|
{
|
|
cvAcc( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], test_array[MASK][0] );
|
|
}
|
|
|
|
|
|
void CV_AccTest::prepare_to_validation( int )
|
|
{
|
|
const CvMat* src = &test_mat[INPUT][0];
|
|
CvMat* dst = &test_mat[REF_INPUT_OUTPUT][0];
|
|
CvMat* temp = &test_mat[TEMP][0];
|
|
const CvMat* mask = test_array[MASK][0] ? &test_mat[MASK][0] : 0;
|
|
|
|
cvTsAdd( src, cvScalarAll(1.), dst, cvScalarAll(1.), cvScalarAll(0.), temp, 0 );
|
|
cvTsCopy( temp, dst, mask );
|
|
}
|
|
|
|
CV_AccTest acc_test;
|
|
|
|
|
|
/// square acc
|
|
class CV_SquareAccTest : public CV_AccumBaseTest
|
|
{
|
|
public:
|
|
CV_SquareAccTest();
|
|
protected:
|
|
void run_func();
|
|
void prepare_to_validation( int );
|
|
};
|
|
|
|
|
|
CV_SquareAccTest::CV_SquareAccTest()
|
|
: CV_AccumBaseTest( "accum-squareacc", "cvSquareAcc" )
|
|
{
|
|
}
|
|
|
|
|
|
void CV_SquareAccTest::run_func()
|
|
{
|
|
cvSquareAcc( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], test_array[MASK][0] );
|
|
}
|
|
|
|
|
|
void CV_SquareAccTest::prepare_to_validation( int )
|
|
{
|
|
const CvMat* src = &test_mat[INPUT][0];
|
|
CvMat* dst = &test_mat[REF_INPUT_OUTPUT][0];
|
|
CvMat* temp = &test_mat[TEMP][0];
|
|
const CvMat* mask = test_array[MASK][0] ? &test_mat[MASK][0] : 0;
|
|
|
|
cvTsMul( src, src, cvScalarAll(1.), temp );
|
|
cvTsAdd( temp, cvScalarAll(1.), dst, cvScalarAll(1.), cvScalarAll(0.), temp, 0 );
|
|
cvTsCopy( temp, dst, mask );
|
|
}
|
|
|
|
CV_SquareAccTest squareacc_test;
|
|
|
|
|
|
/// multiply acc
|
|
class CV_MultiplyAccTest : public CV_AccumBaseTest
|
|
{
|
|
public:
|
|
CV_MultiplyAccTest();
|
|
protected:
|
|
void run_func();
|
|
void prepare_to_validation( int );
|
|
};
|
|
|
|
|
|
CV_MultiplyAccTest::CV_MultiplyAccTest()
|
|
: CV_AccumBaseTest( "accum-mulacc", "cvMultiplyAcc" )
|
|
{
|
|
test_array[INPUT].push(NULL);
|
|
}
|
|
|
|
|
|
void CV_MultiplyAccTest::run_func()
|
|
{
|
|
cvMultiplyAcc( test_array[INPUT][0], test_array[INPUT][1],
|
|
test_array[INPUT_OUTPUT][0], test_array[MASK][0] );
|
|
}
|
|
|
|
|
|
void CV_MultiplyAccTest::prepare_to_validation( int )
|
|
{
|
|
const CvMat* src1 = &test_mat[INPUT][0];
|
|
const CvMat* src2 = &test_mat[INPUT][1];
|
|
CvMat* dst = &test_mat[REF_INPUT_OUTPUT][0];
|
|
CvMat* temp = &test_mat[TEMP][0];
|
|
const CvMat* mask = test_array[MASK][0] ? &test_mat[MASK][0] : 0;
|
|
|
|
cvTsMul( src1, src2, cvScalarAll(1.), temp );
|
|
cvTsAdd( temp, cvScalarAll(1.), dst, cvScalarAll(1.), cvScalarAll(0.), temp, 0 );
|
|
cvTsCopy( temp, dst, mask );
|
|
}
|
|
|
|
CV_MultiplyAccTest mulacc_test;
|
|
|
|
|
|
/// running average
|
|
class CV_RunningAvgTest : public CV_AccumBaseTest
|
|
{
|
|
public:
|
|
CV_RunningAvgTest();
|
|
protected:
|
|
void run_func();
|
|
void prepare_to_validation( int );
|
|
};
|
|
|
|
|
|
CV_RunningAvgTest::CV_RunningAvgTest()
|
|
: CV_AccumBaseTest( "accum-runavg", "cvRunningAvg" )
|
|
{
|
|
}
|
|
|
|
|
|
void CV_RunningAvgTest::run_func()
|
|
{
|
|
cvRunningAvg( test_array[INPUT][0], test_array[INPUT_OUTPUT][0],
|
|
alpha, test_array[MASK][0] );
|
|
}
|
|
|
|
|
|
void CV_RunningAvgTest::prepare_to_validation( int )
|
|
{
|
|
const CvMat* src = &test_mat[INPUT][0];
|
|
CvMat* dst = &test_mat[REF_INPUT_OUTPUT][0];
|
|
CvMat* temp = &test_mat[TEMP][0];
|
|
const CvMat* mask = test_array[MASK][0] ? &test_mat[MASK][0] : 0;
|
|
double a[1], b[1];
|
|
int accdepth = CV_MAT_DEPTH(test_mat[INPUT_OUTPUT][0].type);
|
|
CvMat A = cvMat(1,1,accdepth,a), B = cvMat(1,1,accdepth,b);
|
|
cvSetReal1D( &A, 0, alpha);
|
|
cvSetReal1D( &B, 0, 1 - cvGetReal1D(&A, 0));
|
|
|
|
cvTsAdd( src, cvScalarAll(cvGetReal1D(&A, 0)), dst, cvScalarAll(cvGetReal1D(&B, 0)), cvScalarAll(0.), temp, 0 );
|
|
cvTsCopy( temp, dst, mask );
|
|
}
|
|
|
|
CV_RunningAvgTest runavg_test;
|
|
|