1004 lines
37 KiB
C++
Executable File
1004 lines
37 KiB
C++
Executable File
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#ifdef HAVE_EIGEN2
|
|
#include <Eigen/Array>
|
|
#endif
|
|
|
|
using namespace std;
|
|
|
|
namespace cv
|
|
{
|
|
|
|
Mat windowedMatchingMask( const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
|
|
float maxDeltaX, float maxDeltaY )
|
|
{
|
|
if( keypoints1.empty() || keypoints2.empty() )
|
|
return Mat();
|
|
|
|
Mat mask( keypoints1.size(), keypoints2.size(), CV_8UC1 );
|
|
for( size_t i = 0; i < keypoints1.size(); i++ )
|
|
{
|
|
for( size_t j = 0; j < keypoints2.size(); j++ )
|
|
{
|
|
Point2f diff = keypoints2[j].pt - keypoints1[i].pt;
|
|
mask.at<uchar>(i, j) = std::abs(diff.x) < maxDeltaX && std::abs(diff.y) < maxDeltaY;
|
|
}
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* DescriptorMatcher *
|
|
\****************************************************************************************/
|
|
void DescriptorMatcher::DescriptorCollection::set( const vector<Mat>& descCollection )
|
|
{
|
|
clear();
|
|
|
|
size_t imageCount = descCollection.size();
|
|
CV_Assert( imageCount > 0 );
|
|
|
|
startIdxs.resize( imageCount );
|
|
|
|
int dim = -1;
|
|
int type = -1;
|
|
startIdxs[0] = 0;
|
|
for( size_t i = 1; i < imageCount; i++ )
|
|
{
|
|
int s = 0;
|
|
if( !descCollection[i-1].empty() )
|
|
{
|
|
dim = descCollection[i-1].cols;
|
|
type = descCollection[i-1].type();
|
|
s = descCollection[i-1].rows;
|
|
}
|
|
startIdxs[i] = startIdxs[i-1] + s;
|
|
}
|
|
if( imageCount == 1 )
|
|
{
|
|
if( descCollection[0].empty() ) return;
|
|
|
|
dim = descCollection[0].cols;
|
|
type = descCollection[0].type();
|
|
}
|
|
assert( dim > 0 );
|
|
|
|
int count = startIdxs[imageCount-1] + descCollection[imageCount-1].rows;
|
|
|
|
if( count > 0 )
|
|
{
|
|
dmatrix.create( count, dim, type );
|
|
for( size_t i = 0; i < imageCount; i++ )
|
|
{
|
|
if( !descCollection[i].empty() )
|
|
{
|
|
CV_Assert( descCollection[i].cols == dim && descCollection[i].type() == type );
|
|
Mat m = dmatrix.rowRange( startIdxs[i], startIdxs[i] + descCollection[i].rows );
|
|
descCollection[i].copyTo(m);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void DescriptorMatcher::DescriptorCollection::clear()
|
|
{
|
|
startIdxs.clear();
|
|
dmatrix.release();
|
|
}
|
|
|
|
const Mat DescriptorMatcher::DescriptorCollection::getDescriptor( int imgIdx, int localDescIdx ) const
|
|
{
|
|
CV_Assert( imgIdx < (int)startIdxs.size() );
|
|
int globalIdx = startIdxs[imgIdx] + localDescIdx;
|
|
CV_Assert( globalIdx < (int)size() );
|
|
|
|
return getDescriptor( globalIdx );
|
|
}
|
|
|
|
const Mat DescriptorMatcher::DescriptorCollection::getDescriptor( int globalDescIdx ) const
|
|
{
|
|
CV_Assert( globalDescIdx < size() );
|
|
return dmatrix.row( globalDescIdx );
|
|
}
|
|
|
|
void DescriptorMatcher::DescriptorCollection::getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const
|
|
{
|
|
imgIdx = -1;
|
|
CV_Assert( globalDescIdx < size() );
|
|
for( size_t i = 1; i < startIdxs.size(); i++ )
|
|
{
|
|
if( globalDescIdx < startIdxs[i] )
|
|
{
|
|
imgIdx = i - 1;
|
|
break;
|
|
}
|
|
}
|
|
imgIdx = imgIdx == -1 ? startIdxs.size() -1 : imgIdx;
|
|
localDescIdx = globalDescIdx - startIdxs[imgIdx];
|
|
}
|
|
|
|
/*
|
|
* DescriptorMatcher
|
|
*/
|
|
void convertMatches( const vector<vector<DMatch> >& knnMatches, vector<DMatch>& matches )
|
|
{
|
|
matches.clear();
|
|
matches.reserve( knnMatches.size() );
|
|
for( size_t i = 0; i < knnMatches.size(); i++ )
|
|
{
|
|
CV_Assert( knnMatches[i].size() <= 1 );
|
|
if( !knnMatches[i].empty() )
|
|
matches.push_back( knnMatches[i][0] );
|
|
}
|
|
}
|
|
|
|
void DescriptorMatcher::add( const vector<Mat>& descCollection )
|
|
{
|
|
trainDescCollection.insert( trainDescCollection.end(), descCollection.begin(), descCollection.end() );
|
|
}
|
|
|
|
void DescriptorMatcher::clear()
|
|
{
|
|
trainDescCollection.clear();
|
|
}
|
|
|
|
void DescriptorMatcher::match( const Mat& queryDescs, const Mat& trainDescs, vector<DMatch>& matches, const Mat& mask ) const
|
|
{
|
|
Ptr<DescriptorMatcher> tempMatcher = cloneWithoutData();
|
|
tempMatcher->add( vector<Mat>(1, trainDescs) );
|
|
tempMatcher->match( queryDescs, matches, vector<Mat>(1, mask) );
|
|
}
|
|
|
|
void DescriptorMatcher::knnMatch( const Mat& queryDescs, const Mat& trainDescs, vector<vector<DMatch> >& matches, int knn,
|
|
const Mat& mask, bool compactResult ) const
|
|
{
|
|
Ptr<DescriptorMatcher> tempMatcher = cloneWithoutData();
|
|
tempMatcher->add( vector<Mat>(1, trainDescs) );
|
|
tempMatcher->knnMatch( queryDescs, matches, knn, vector<Mat>(1, mask), compactResult );
|
|
}
|
|
|
|
void DescriptorMatcher::radiusMatch( const Mat& queryDescs, const Mat& trainDescs, vector<vector<DMatch> >& matches, float maxDistance,
|
|
const Mat& mask, bool compactResult ) const
|
|
{
|
|
Ptr<DescriptorMatcher> tempMatcher = cloneWithoutData();
|
|
tempMatcher->add( vector<Mat>(1, trainDescs) );
|
|
tempMatcher->radiusMatch( queryDescs, matches, maxDistance, vector<Mat>(1, mask), compactResult );
|
|
}
|
|
|
|
void DescriptorMatcher::match( const Mat& queryDescs, vector<DMatch>& matches, const vector<Mat>& masks )
|
|
{
|
|
vector<vector<DMatch> > knnMatches;
|
|
knnMatch( queryDescs, knnMatches, 1, masks, true /*compactResult*/ );
|
|
convertMatches( knnMatches, matches );
|
|
}
|
|
|
|
void DescriptorMatcher::knnMatch( const Mat& queryDescs, vector<vector<DMatch> >& matches, int knn,
|
|
const vector<Mat>& masks, bool compactResult )
|
|
{
|
|
train();
|
|
knnMatchImpl( queryDescs, matches, knn, masks, compactResult );
|
|
}
|
|
|
|
void DescriptorMatcher::radiusMatch( const Mat& queryDescs, vector<vector<DMatch> >& matches, float maxDistance,
|
|
const vector<Mat>& masks, bool compactResult )
|
|
{
|
|
train();
|
|
radiusMatchImpl( queryDescs, matches, maxDistance, masks, compactResult );
|
|
}
|
|
|
|
template<>
|
|
void BruteForceMatcher<L2<float> >::knnMatchImpl( const Mat& queryDescs, vector<vector<DMatch> >& matches, int knn,
|
|
const vector<Mat>& masks, bool compactResult )
|
|
{
|
|
#ifndef HAVE_EIGEN2
|
|
bfKnnMatchImpl<L2<float> >( *this, queryDescs, matches, knn, masks, compactResult );
|
|
#else
|
|
CV_Assert( queryDescs.type() == CV_32FC1 || queryDescs.empty() );
|
|
CV_Assert( masks.empty() || masks.size() == trainDescCollection.size() );
|
|
|
|
matches.reserve(queryDescs.rows);
|
|
size_t imgCount = trainDescCollection.size();
|
|
|
|
Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic> e_query_t;
|
|
vector<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic> > e_trainCollection(trainDescCollection.size());
|
|
vector<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic> > e_trainNorms2(trainDescCollection.size());
|
|
cv2eigen( queryDescs.t(), e_query_t);
|
|
for( size_t i = 0; i < trainDescCollection.size(); i++ )
|
|
{
|
|
cv2eigen( trainDescCollection[i], e_trainCollection[i] );
|
|
e_trainNorms2[i] = e_trainCollection[i].rowwise().squaredNorm() / 2;
|
|
}
|
|
|
|
vector<Eigen::Matrix<float, Eigen::Dynamic, 1> > e_allDists( imgCount ); // distances between one query descriptor and all train descriptors
|
|
|
|
for( int qIdx = 0; qIdx < queryDescs.rows; qIdx++ )
|
|
{
|
|
if( maskedOut( masks, qIdx ) )
|
|
{
|
|
if( !compactResult ) // push empty vector
|
|
matches.push_back( vector<DMatch>() );
|
|
}
|
|
else
|
|
{
|
|
float queryNorm2 = e_query_t.col(qIdx).squaredNorm();
|
|
// 1. compute distances between i-th query descriptor and all train descriptors
|
|
for( size_t iIdx = 0; iIdx < imgCount; iIdx++ )
|
|
{
|
|
CV_Assert( masks.empty() || masks[iIdx].empty() ||
|
|
( masks[iIdx].rows == queryDescs.rows && masks[iIdx].cols == trainDescCollection[iIdx].rows &&
|
|
masks[iIdx].type() == CV_8UC1 ) );
|
|
CV_Assert( trainDescCollection[iIdx].type() == CV_32FC1 || trainDescCollection[iIdx].empty() );
|
|
CV_Assert( queryDescs.cols == trainDescCollection[iIdx].cols );
|
|
|
|
e_allDists[iIdx] = e_trainCollection[iIdx] *e_query_t.col(qIdx);
|
|
e_allDists[iIdx] -= e_trainNorms2[iIdx];
|
|
|
|
if( !masks.empty() && !masks[iIdx].empty() )
|
|
{
|
|
const uchar* maskPtr = (uchar*)masks[iIdx].ptr(qIdx);
|
|
for( int c = 0; c < masks[iIdx].cols; c++ )
|
|
{
|
|
if( maskPtr[c] == 0 )
|
|
e_allDists[iIdx](c) = std::numeric_limits<float>::min();
|
|
}
|
|
}
|
|
}
|
|
|
|
// 2. choose knn nearest matches for query[i]
|
|
matches.push_back( vector<DMatch>() );
|
|
vector<vector<DMatch> >::reverse_iterator curMatches = matches.rbegin();
|
|
for( int k = 0; k < knn; k++ )
|
|
{
|
|
float totalMaxCoeff = std::numeric_limits<float>::min();
|
|
int bestTrainIdx = -1, bestImgIdx = -1;
|
|
for( size_t iIdx = 0; iIdx < imgCount; iIdx++ )
|
|
{
|
|
int loc;
|
|
float curMaxCoeff = e_allDists[iIdx].maxCoeff( &loc );
|
|
if( curMaxCoeff > totalMaxCoeff )
|
|
{
|
|
totalMaxCoeff = curMaxCoeff;
|
|
bestTrainIdx = loc;
|
|
bestImgIdx = iIdx;
|
|
}
|
|
}
|
|
if( bestTrainIdx == -1 )
|
|
break;
|
|
|
|
e_allDists[bestImgIdx](bestTrainIdx) = std::numeric_limits<float>::min();
|
|
curMatches->push_back( DMatch(qIdx, bestTrainIdx, bestImgIdx, sqrt((-2)*totalMaxCoeff + queryNorm2)) );
|
|
}
|
|
std::sort( curMatches->begin(), curMatches->end() );
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
template<>
|
|
void BruteForceMatcher<L2<float> >::radiusMatchImpl( const Mat& queryDescs, vector<vector<DMatch> >& matches, float maxDistance,
|
|
const vector<Mat>& masks, bool compactResult )
|
|
{
|
|
#ifndef HAVE_EIGEN2
|
|
bfRadiusMatchImpl<L2<float> >( *this, queryDescs, matches, maxDistance, masks, compactResult );
|
|
#else
|
|
CV_Assert( queryDescs.type() == CV_32FC1 || queryDescs.empty() );
|
|
CV_Assert( masks.empty() || masks.size() == trainDescCollection.size() );
|
|
|
|
matches.reserve(queryDescs.rows);
|
|
size_t imgCount = trainDescCollection.size();
|
|
|
|
Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic> e_query_t;
|
|
vector<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic> > e_trainCollection(trainDescCollection.size());
|
|
vector<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic> > e_trainNorms2(trainDescCollection.size());
|
|
cv2eigen( queryDescs.t(), e_query_t);
|
|
for( size_t i = 0; i < trainDescCollection.size(); i++ )
|
|
{
|
|
cv2eigen( trainDescCollection[i], e_trainCollection[i] );
|
|
e_trainNorms2[i] = e_trainCollection[i].rowwise().squaredNorm() / 2;
|
|
}
|
|
|
|
vector<Eigen::Matrix<float, Eigen::Dynamic, 1> > e_allDists( imgCount ); // distances between one query descriptor and all train descriptors
|
|
|
|
for( int qIdx = 0; qIdx < queryDescs.rows; qIdx++ )
|
|
{
|
|
if( maskedOut( masks, qIdx ) )
|
|
{
|
|
if( !compactResult ) // push empty vector
|
|
matches.push_back( vector<DMatch>() );
|
|
}
|
|
else
|
|
{
|
|
float queryNorm2 = e_query_t.col(qIdx).squaredNorm();
|
|
// 1. compute distances between i-th query descriptor and all train descriptors
|
|
for( size_t iIdx = 0; iIdx < imgCount; iIdx++ )
|
|
{
|
|
CV_Assert( masks.empty() || masks[iIdx].empty() ||
|
|
( masks[iIdx].rows == queryDescs.rows && masks[iIdx].cols == trainDescCollection[iIdx].rows &&
|
|
masks[iIdx].type() == CV_8UC1 ) );
|
|
CV_Assert( trainDescCollection[iIdx].type() == CV_32FC1 || trainDescCollection[iIdx].empty() );
|
|
CV_Assert( queryDescs.cols == trainDescCollection[iIdx].cols );
|
|
|
|
e_allDists[iIdx] = e_trainCollection[iIdx] *e_query_t.col(qIdx);
|
|
e_allDists[iIdx] -= e_trainNorms2[iIdx];
|
|
}
|
|
|
|
matches.push_back( vector<DMatch>() );
|
|
vector<vector<DMatch> >::reverse_iterator curMatches = matches.rbegin();
|
|
for( size_t iIdx = 0; iIdx < imgCount; iIdx++ )
|
|
{
|
|
assert( e_allDists[iIdx].rows() == trainDescCollection[iIdx].rows );
|
|
for( int tIdx = 0; tIdx < e_allDists[iIdx].rows(); tIdx++ )
|
|
{
|
|
if( masks.empty() || possibleMatch(masks[iIdx], qIdx, tIdx) )
|
|
{
|
|
float d = sqrt((-2)*e_allDists[iIdx](tIdx) + queryNorm2);
|
|
if( d < maxDistance )
|
|
curMatches->push_back( DMatch( qIdx, tIdx, iIdx, d ) );
|
|
}
|
|
}
|
|
}
|
|
std::sort( curMatches->begin(), curMatches->end() );
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Flann based matcher
|
|
*/
|
|
FlannBasedMatcher::FlannBasedMatcher( const Ptr<flann::IndexParams>& _indexParams, const Ptr<flann::SearchParams>& _searchParams )
|
|
: indexParams(_indexParams), searchParams(_searchParams), addedDescCount(0)
|
|
{
|
|
CV_Assert( !_indexParams.empty() );
|
|
CV_Assert( !_searchParams.empty() );
|
|
}
|
|
|
|
void FlannBasedMatcher::add( const vector<Mat>& descCollection )
|
|
{
|
|
DescriptorMatcher::add( descCollection );
|
|
for( size_t i = 0; i < descCollection.size(); i++ )
|
|
{
|
|
addedDescCount += descCollection[i].rows;
|
|
}
|
|
}
|
|
|
|
void FlannBasedMatcher::clear()
|
|
{
|
|
DescriptorMatcher::clear();
|
|
|
|
mergedDescriptors.clear();
|
|
flannIndex.release();
|
|
|
|
addedDescCount = 0;
|
|
}
|
|
|
|
void FlannBasedMatcher::train()
|
|
{
|
|
if( flannIndex.empty() || mergedDescriptors.size() < addedDescCount )
|
|
{
|
|
mergedDescriptors.set( trainDescCollection );
|
|
flannIndex = new flann::Index( mergedDescriptors.getDescriptors(), *indexParams );
|
|
}
|
|
}
|
|
|
|
void FlannBasedMatcher::convertToDMatches( const DescriptorCollection& collection, const Mat& indices, const Mat& dists,
|
|
vector<vector<DMatch> >& matches )
|
|
{
|
|
matches.resize( indices.rows );
|
|
for( int i = 0; i < indices.rows; i++ )
|
|
{
|
|
for( int j = 0; j < indices.cols; j++ )
|
|
{
|
|
int idx = indices.at<int>(i, j);
|
|
if( idx >= 0 )
|
|
{
|
|
int imgIdx, trainIdx;
|
|
collection.getLocalIdx( idx, imgIdx, trainIdx );
|
|
matches[i].push_back( DMatch( i, trainIdx, imgIdx, std::sqrt(dists.at<float>(i,j))) );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void FlannBasedMatcher::knnMatchImpl( const Mat& queryDescs, vector<vector<DMatch> >& matches, int knn,
|
|
const vector<Mat>& /*masks*/, bool /*compactResult*/ )
|
|
{
|
|
Mat indices( queryDescs.rows, knn, CV_32SC1 );
|
|
Mat dists( queryDescs.rows, knn, CV_32FC1);
|
|
flannIndex->knnSearch( queryDescs, indices, dists, knn, *searchParams );
|
|
|
|
convertToDMatches( mergedDescriptors, indices, dists, matches );
|
|
}
|
|
|
|
void FlannBasedMatcher::radiusMatchImpl( const Mat& queryDescs, vector<vector<DMatch> >& matches, float maxDistance,
|
|
const vector<Mat>& /*masks*/, bool /*compactResult*/ )
|
|
{
|
|
const int count = mergedDescriptors.size(); // TODO do count as param?
|
|
Mat indices( queryDescs.rows, count, CV_32SC1, Scalar::all(-1) );
|
|
Mat dists( queryDescs.rows, count, CV_32FC1, Scalar::all(-1) );
|
|
for( int qIdx = 0; qIdx < queryDescs.rows; qIdx++ )
|
|
{
|
|
Mat queryDescsRow = queryDescs.row(qIdx);
|
|
Mat indicesRow = indices.row(qIdx);
|
|
Mat distsRow = dists.row(qIdx);
|
|
flannIndex->radiusSearch( queryDescsRow, indicesRow, distsRow, maxDistance*maxDistance, *searchParams );
|
|
}
|
|
|
|
convertToDMatches( mergedDescriptors, indices, dists, matches );
|
|
}
|
|
|
|
/*
|
|
* Factory function for DescriptorMatcher creating
|
|
*/
|
|
Ptr<DescriptorMatcher> createDescriptorMatcher( const string& descriptorMatcherType )
|
|
{
|
|
DescriptorMatcher* dm = 0;
|
|
if( !descriptorMatcherType.compare( "BruteForce" ) )
|
|
{
|
|
dm = new BruteForceMatcher<L2<float> >();
|
|
}
|
|
else if( !descriptorMatcherType.compare( "BruteForce-L1" ) )
|
|
{
|
|
dm = new BruteForceMatcher<L1<float> >();
|
|
}
|
|
else if ( !descriptorMatcherType.compare( "FlannBased" ) )
|
|
{
|
|
dm = new FlannBasedMatcher();
|
|
}
|
|
else
|
|
{
|
|
//CV_Error( CV_StsBadArg, "unsupported descriptor matcher type");
|
|
}
|
|
|
|
return dm;
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* GenericDescriptorMatcher *
|
|
\****************************************************************************************/
|
|
/*
|
|
* KeyPointCollection
|
|
*/
|
|
void GenericDescriptorMatcher::KeyPointCollection::add( const vector<Mat>& _images,
|
|
const vector<vector<KeyPoint> >& _points )
|
|
{
|
|
CV_Assert( !_images.empty() );
|
|
CV_Assert( _images.size() == _points.size() );
|
|
|
|
images.insert( images.end(), _images.begin(), _images.end() );
|
|
points.insert( points.end(), _points.begin(), _points.end() );
|
|
for( size_t i = 0; i < _points.size(); i++ )
|
|
size += _points[i].size();
|
|
|
|
size_t prevSize = startIndices.size(), addSize = _images.size();
|
|
startIndices.resize( prevSize + addSize );
|
|
|
|
if( prevSize == 0 )
|
|
startIndices[prevSize] = 0; //first
|
|
else
|
|
startIndices[prevSize] = startIndices[prevSize-1] + points[prevSize-1].size();
|
|
|
|
for( size_t i = prevSize + 1; i < prevSize + addSize; i++ )
|
|
{
|
|
startIndices[i] = startIndices[i - 1] + points[i - 1].size();
|
|
}
|
|
}
|
|
|
|
void GenericDescriptorMatcher::KeyPointCollection::clear()
|
|
{
|
|
points.clear();
|
|
}
|
|
|
|
const KeyPoint& GenericDescriptorMatcher::KeyPointCollection::getKeyPoint( int imgIdx, int localPointIdx ) const
|
|
{
|
|
CV_Assert( imgIdx < (int)images.size() );
|
|
CV_Assert( localPointIdx < (int)points[imgIdx].size() );
|
|
return points[imgIdx][localPointIdx];
|
|
}
|
|
|
|
const KeyPoint& GenericDescriptorMatcher::KeyPointCollection::getKeyPoint( int globalPointIdx ) const
|
|
{
|
|
int imgIdx, localPointIdx;
|
|
getLocalIdx( globalPointIdx, imgIdx, localPointIdx );
|
|
return points[imgIdx][localPointIdx];
|
|
}
|
|
|
|
void GenericDescriptorMatcher::KeyPointCollection::getLocalIdx( int globalPointIdx, int& imgIdx, int& localPointIdx ) const
|
|
{
|
|
imgIdx = -1;
|
|
CV_Assert( globalPointIdx < (int)pointCount() );
|
|
for( size_t i = 1; i < startIndices.size(); i++ )
|
|
{
|
|
if( globalPointIdx < startIndices[i] )
|
|
{
|
|
imgIdx = i - 1;
|
|
break;
|
|
}
|
|
}
|
|
imgIdx = imgIdx == -1 ? startIndices.size() -1 : imgIdx;
|
|
localPointIdx = globalPointIdx - startIndices[imgIdx];
|
|
}
|
|
|
|
/*
|
|
* GenericDescriptorMatcher
|
|
*/
|
|
void GenericDescriptorMatcher::add( const vector<Mat>& imgCollection,
|
|
vector<vector<KeyPoint> >& pointCollection )
|
|
{
|
|
trainPointCollection.add( imgCollection, pointCollection );
|
|
}
|
|
|
|
void GenericDescriptorMatcher::clear()
|
|
{
|
|
trainPointCollection.clear();
|
|
}
|
|
|
|
void GenericDescriptorMatcher::classify( const Mat& queryImage, vector<KeyPoint>& queryPoints,
|
|
const Mat& trainImage, vector<KeyPoint>& trainPoints ) const
|
|
{
|
|
vector<DMatch> matches;
|
|
match( queryImage, queryPoints, trainImage, trainPoints, matches );
|
|
|
|
// remap keypoint indices to descriptors
|
|
for( size_t i = 0; i < matches.size(); i++ )
|
|
queryPoints[matches[i].queryIdx].class_id = trainPoints[matches[i].trainIdx].class_id;
|
|
}
|
|
|
|
void GenericDescriptorMatcher::classify( const Mat& queryImage, vector<KeyPoint>& queryPoints )
|
|
{
|
|
vector<DMatch> matches;
|
|
match( queryImage, queryPoints, matches );
|
|
|
|
// remap keypoint indices to descriptors
|
|
for( size_t i = 0; i < matches.size(); i++ )
|
|
queryPoints[matches[i].queryIdx].class_id = trainPointCollection.getKeyPoint( matches[i].trainIdx, matches[i].trainIdx ).class_id;
|
|
}
|
|
|
|
void GenericDescriptorMatcher::match( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
const Mat& trainImg, vector<KeyPoint>& trainPoints,
|
|
vector<DMatch>& matches, const Mat& mask ) const
|
|
{
|
|
Ptr<GenericDescriptorMatcher> tempMatcher = createEmptyMatcherCopy();
|
|
vector<vector<KeyPoint> > vecTrainPoints(1, trainPoints);
|
|
tempMatcher->add( vector<Mat>(1, trainImg), vecTrainPoints );
|
|
tempMatcher->match( queryImg, queryPoints, matches, vector<Mat>(1, mask) );
|
|
vecTrainPoints[0].swap( trainPoints );
|
|
}
|
|
|
|
void GenericDescriptorMatcher::knnMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
const Mat& trainImg, vector<KeyPoint>& trainPoints,
|
|
vector<vector<DMatch> >& matches, int knn, const Mat& mask, bool compactResult ) const
|
|
{
|
|
Ptr<GenericDescriptorMatcher> tempMatcher = createEmptyMatcherCopy();
|
|
vector<vector<KeyPoint> > vecTrainPoints(1, trainPoints);
|
|
tempMatcher->add( vector<Mat>(1, trainImg), vecTrainPoints );
|
|
tempMatcher->knnMatch( queryImg, queryPoints, matches, knn, vector<Mat>(1, mask), compactResult );
|
|
vecTrainPoints[0].swap( trainPoints );
|
|
}
|
|
|
|
void GenericDescriptorMatcher::radiusMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
const Mat& trainImg, vector<KeyPoint>& trainPoints,
|
|
vector<vector<DMatch> >& matches, float maxDistance,
|
|
const Mat& mask, bool compactResult ) const
|
|
{
|
|
Ptr<GenericDescriptorMatcher> tempMatcher = createEmptyMatcherCopy();
|
|
vector<vector<KeyPoint> > vecTrainPoints(1, trainPoints);
|
|
tempMatcher->add( vector<Mat>(1, trainImg), vecTrainPoints );
|
|
tempMatcher->radiusMatch( queryImg, queryPoints, matches, maxDistance, vector<Mat>(1, mask), compactResult );
|
|
vecTrainPoints[0].swap( trainPoints );
|
|
}
|
|
|
|
void GenericDescriptorMatcher::match( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
vector<DMatch>& matches, const vector<Mat>& masks )
|
|
{
|
|
vector<vector<DMatch> > knnMatches;
|
|
knnMatch( queryImg, queryPoints, knnMatches, 1, masks, false );
|
|
convertMatches( knnMatches, matches );
|
|
}
|
|
|
|
void GenericDescriptorMatcher::knnMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
vector<vector<DMatch> >& matches, int knn,
|
|
const vector<Mat>& masks, bool compactResult )
|
|
{
|
|
train();
|
|
knnMatchImpl( queryImg, queryPoints, matches, knn, masks, compactResult );
|
|
}
|
|
|
|
void GenericDescriptorMatcher::radiusMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
vector<vector<DMatch> >& matches, float maxDistance,
|
|
const vector<Mat>& masks, bool compactResult )
|
|
{
|
|
train();
|
|
radiusMatchImpl( queryImg, queryPoints, matches, maxDistance, masks, compactResult );
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* OneWayDescriptorMatcher *
|
|
\****************************************************************************************/
|
|
OneWayDescriptorMatcher::OneWayDescriptorMatcher( const Params& _params)
|
|
{
|
|
initialize(_params);
|
|
}
|
|
|
|
OneWayDescriptorMatcher::~OneWayDescriptorMatcher()
|
|
{}
|
|
|
|
void OneWayDescriptorMatcher::initialize( const Params& _params, const Ptr<OneWayDescriptorBase>& _base )
|
|
{
|
|
clear();
|
|
|
|
if( _base.empty() )
|
|
base = _base;
|
|
|
|
params = _params;
|
|
}
|
|
|
|
void OneWayDescriptorMatcher::clear()
|
|
{
|
|
GenericDescriptorMatcher::clear();
|
|
|
|
prevTrainCount = 0;
|
|
base->clear();
|
|
}
|
|
|
|
void OneWayDescriptorMatcher::train()
|
|
{
|
|
if( base.empty() || prevTrainCount < (int)trainPointCollection.pointCount() )
|
|
{
|
|
base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.pcaFilename,
|
|
params.trainPath, params.trainImagesList, params.minScale, params.maxScale, params.stepScale );
|
|
|
|
base->Allocate( trainPointCollection.pointCount() );
|
|
prevTrainCount = trainPointCollection.pointCount();
|
|
|
|
const vector<vector<KeyPoint> >& points = trainPointCollection.getKeypoints();
|
|
int count = 0;
|
|
for( size_t i = 0; i < points.size(); i++ )
|
|
{
|
|
IplImage _image = trainPointCollection.getImage(i);
|
|
for( size_t j = 0; j < points[i].size(); j++ )
|
|
base->InitializeDescriptor( count++, &_image, points[i][j], "" );
|
|
}
|
|
|
|
#if defined(_KDTREE)
|
|
base->ConvertDescriptorsArrayToTree();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void OneWayDescriptorMatcher::knnMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
vector<vector<DMatch> >& matches, int knn,
|
|
const vector<Mat>& /*masks*/, bool /*compactResult*/ )
|
|
{
|
|
train();
|
|
|
|
CV_Assert( knn == 1 ); // knn > 1 unsupported because of bug in OneWayDescriptorBase for this case
|
|
|
|
matches.resize( queryPoints.size() );
|
|
IplImage _qimage = queryImg;
|
|
for( size_t i = 0; i < queryPoints.size(); i++ )
|
|
{
|
|
int descIdx = -1, poseIdx = -1;
|
|
float distance;
|
|
base->FindDescriptor( &_qimage, queryPoints[i].pt, descIdx, poseIdx, distance );
|
|
matches[i].push_back( DMatch(i, descIdx, distance) );
|
|
}
|
|
}
|
|
|
|
void OneWayDescriptorMatcher::radiusMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
vector<vector<DMatch> >& matches, float maxDistance,
|
|
const vector<Mat>& /*masks*/, bool /*compactResult*/ )
|
|
{
|
|
train();
|
|
|
|
matches.resize( queryPoints.size() );
|
|
IplImage _qimage = queryImg;
|
|
for( size_t i = 0; i < queryPoints.size(); i++ )
|
|
{
|
|
int descIdx = -1, poseIdx = -1;
|
|
float distance;
|
|
base->FindDescriptor( &_qimage, queryPoints[i].pt, descIdx, poseIdx, distance );
|
|
if( distance < maxDistance )
|
|
matches[i].push_back( DMatch(i, descIdx, distance) );
|
|
}
|
|
}
|
|
|
|
void OneWayDescriptorMatcher::read( const FileNode &fn )
|
|
{
|
|
base = new OneWayDescriptorObject( params.patchSize, params.poseCount, string (), string (), string (),
|
|
params.minScale, params.maxScale, params.stepScale );
|
|
base->Read (fn);
|
|
}
|
|
|
|
void OneWayDescriptorMatcher::write( FileStorage& fs ) const
|
|
{
|
|
base->Write (fs);
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* FernDescriptorMatcher *
|
|
\****************************************************************************************/
|
|
FernDescriptorMatcher::Params::Params( int _nclasses, int _patchSize, int _signatureSize,
|
|
int _nstructs, int _structSize, int _nviews, int _compressionMethod,
|
|
const PatchGenerator& _patchGenerator ) :
|
|
nclasses(_nclasses), patchSize(_patchSize), signatureSize(_signatureSize),
|
|
nstructs(_nstructs), structSize(_structSize), nviews(_nviews),
|
|
compressionMethod(_compressionMethod), patchGenerator(_patchGenerator)
|
|
{}
|
|
|
|
FernDescriptorMatcher::Params::Params( const string& _filename )
|
|
{
|
|
filename = _filename;
|
|
}
|
|
|
|
FernDescriptorMatcher::FernDescriptorMatcher( const Params& _params )
|
|
{
|
|
prevTrainCount = 0;
|
|
params = _params;
|
|
if( !params.filename.empty() )
|
|
{
|
|
classifier = new FernClassifier;
|
|
FileStorage fs(params.filename, FileStorage::READ);
|
|
if( fs.isOpened() )
|
|
classifier->read( fs.getFirstTopLevelNode() );
|
|
}
|
|
}
|
|
|
|
FernDescriptorMatcher::~FernDescriptorMatcher()
|
|
{}
|
|
|
|
void FernDescriptorMatcher::clear()
|
|
{
|
|
GenericDescriptorMatcher::clear();
|
|
|
|
classifier.release();
|
|
prevTrainCount = 0;
|
|
}
|
|
|
|
void FernDescriptorMatcher::train()
|
|
{
|
|
if( classifier.empty() || prevTrainCount < (int)trainPointCollection.pointCount() )
|
|
{
|
|
assert( params.filename.empty() );
|
|
|
|
vector<vector<Point2f> > points( trainPointCollection.imageCount() );
|
|
for( size_t imgIdx = 0; imgIdx < trainPointCollection.imageCount(); imgIdx++ )
|
|
KeyPoint::convert( trainPointCollection.getKeypoints(imgIdx), points[imgIdx] );
|
|
|
|
classifier = new FernClassifier( points, trainPointCollection.getImages(), vector<vector<int> >(), 0, // each points is a class
|
|
params.patchSize, params.signatureSize, params.nstructs, params.structSize,
|
|
params.nviews, params.compressionMethod, params.patchGenerator );
|
|
}
|
|
}
|
|
|
|
void FernDescriptorMatcher::calcBestProbAndMatchIdx( const Mat& image, const Point2f& pt,
|
|
float& bestProb, int& bestMatchIdx, vector<float>& signature )
|
|
{
|
|
(*classifier)( image, pt, signature);
|
|
|
|
bestProb = -FLT_MAX;
|
|
bestMatchIdx = -1;
|
|
for( int ci = 0; ci < classifier->getClassCount(); ci++ )
|
|
{
|
|
if( signature[ci] > bestProb )
|
|
{
|
|
bestProb = signature[ci];
|
|
bestMatchIdx = ci;
|
|
}
|
|
}
|
|
}
|
|
|
|
void FernDescriptorMatcher::knnMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
vector<vector<DMatch> >& matches, int knn,
|
|
const vector<Mat>& /*masks*/, bool /*compactResult*/ )
|
|
{
|
|
train();
|
|
|
|
matches.resize( queryPoints.size() );
|
|
vector<float> signature( (size_t)classifier->getClassCount() );
|
|
|
|
for( size_t queryIdx = 0; queryIdx < queryPoints.size(); queryIdx++ )
|
|
{
|
|
(*classifier)( queryImg, queryPoints[queryIdx].pt, signature);
|
|
|
|
for( int k = 0; k < knn; k++ )
|
|
{
|
|
DMatch bestMatch;
|
|
size_t ci = 0;
|
|
for( ; ci < signature.size(); ci++ )
|
|
{
|
|
if( -signature[ci] < bestMatch.distance )
|
|
{
|
|
int imgIdx = -1, trainIdx = -1;
|
|
trainPointCollection.getLocalIdx( ci , imgIdx, trainIdx );
|
|
bestMatch = DMatch( queryIdx, trainIdx, imgIdx, -signature[ci] );
|
|
}
|
|
}
|
|
|
|
if( bestMatch.trainIdx == -1 )
|
|
break;
|
|
signature[ci] = std::numeric_limits<float>::min();
|
|
matches[queryIdx].push_back( bestMatch );
|
|
}
|
|
}
|
|
}
|
|
|
|
void FernDescriptorMatcher::radiusMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
vector<vector<DMatch> >& matches, float maxDistance,
|
|
const vector<Mat>& /*masks*/, bool /*compactResult*/ )
|
|
{
|
|
train();
|
|
matches.resize( queryPoints.size() );
|
|
vector<float> signature( (size_t)classifier->getClassCount() );
|
|
|
|
for( size_t i = 0; i < queryPoints.size(); i++ )
|
|
{
|
|
(*classifier)( queryImg, queryPoints[i].pt, signature);
|
|
|
|
for( int ci = 0; ci < classifier->getClassCount(); ci++ )
|
|
{
|
|
if( -signature[ci] < maxDistance )
|
|
{
|
|
int imgIdx = -1, trainIdx = -1;
|
|
trainPointCollection.getLocalIdx( ci , imgIdx, trainIdx );
|
|
matches[i].push_back( DMatch( i, trainIdx, imgIdx, -signature[ci] ) );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void FernDescriptorMatcher::read( const FileNode &fn )
|
|
{
|
|
params.nclasses = fn["nclasses"];
|
|
params.patchSize = fn["patchSize"];
|
|
params.signatureSize = fn["signatureSize"];
|
|
params.nstructs = fn["nstructs"];
|
|
params.structSize = fn["structSize"];
|
|
params.nviews = fn["nviews"];
|
|
params.compressionMethod = fn["compressionMethod"];
|
|
|
|
//classifier->read(fn);
|
|
}
|
|
|
|
void FernDescriptorMatcher::write( FileStorage& fs ) const
|
|
{
|
|
fs << "nclasses" << params.nclasses;
|
|
fs << "patchSize" << params.patchSize;
|
|
fs << "signatureSize" << params.signatureSize;
|
|
fs << "nstructs" << params.nstructs;
|
|
fs << "structSize" << params.structSize;
|
|
fs << "nviews" << params.nviews;
|
|
fs << "compressionMethod" << params.compressionMethod;
|
|
|
|
// classifier->write(fs);
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* VectorDescriptorMatcher *
|
|
\****************************************************************************************/
|
|
void VectorDescriptorMatcher::add( const vector<Mat>& imgCollection,
|
|
vector<vector<KeyPoint> >& pointCollection )
|
|
{
|
|
vector<Mat> descCollection;
|
|
extractor->compute( imgCollection, pointCollection, descCollection );
|
|
|
|
matcher->add( descCollection );
|
|
|
|
trainPointCollection.add( imgCollection, pointCollection );
|
|
}
|
|
|
|
void VectorDescriptorMatcher::clear()
|
|
{
|
|
//extractor->clear();
|
|
matcher->clear();
|
|
GenericDescriptorMatcher::clear();
|
|
}
|
|
|
|
void VectorDescriptorMatcher::train()
|
|
{
|
|
matcher->train();
|
|
}
|
|
|
|
void VectorDescriptorMatcher::knnMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
vector<vector<DMatch> >& matches, int knn,
|
|
const vector<Mat>& masks, bool compactResult )
|
|
{
|
|
Mat queryDescs;
|
|
extractor->compute( queryImg, queryPoints, queryDescs );
|
|
matcher->knnMatch( queryDescs, matches, knn, masks, compactResult );
|
|
}
|
|
|
|
void VectorDescriptorMatcher::radiusMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
vector<vector<DMatch> >& matches, float maxDistance,
|
|
const vector<Mat>& masks, bool compactResult )
|
|
{
|
|
Mat queryDescs;
|
|
extractor->compute( queryImg, queryPoints, queryDescs );
|
|
matcher->radiusMatch( queryDescs, matches, maxDistance, masks, compactResult );
|
|
}
|
|
|
|
void VectorDescriptorMatcher::read( const FileNode& fn )
|
|
{
|
|
GenericDescriptorMatcher::read(fn);
|
|
extractor->read (fn);
|
|
}
|
|
|
|
void VectorDescriptorMatcher::write (FileStorage& fs) const
|
|
{
|
|
GenericDescriptorMatcher::write(fs);
|
|
extractor->write (fs);
|
|
}
|
|
|
|
/*
|
|
* Factory function for GenericDescriptorMatch creating
|
|
*/
|
|
Ptr<GenericDescriptorMatcher> createGenericDescriptorMatcher( const string& genericDescritptorMatcherType, const string ¶msFilename )
|
|
{
|
|
Ptr<GenericDescriptorMatcher> descriptorMatcher;
|
|
if( ! genericDescritptorMatcherType.compare("ONEWAY") )
|
|
{
|
|
descriptorMatcher = new OneWayDescriptorMatcher();
|
|
}
|
|
else if( ! genericDescritptorMatcherType.compare("FERN") )
|
|
{
|
|
descriptorMatcher = new FernDescriptorMatcher();
|
|
}
|
|
else if( ! genericDescritptorMatcherType.compare ("CALONDER") )
|
|
{
|
|
//descriptorMatch = new CalonderDescriptorMatch ();
|
|
}
|
|
|
|
if( !paramsFilename.empty() && descriptorMatcher != 0 )
|
|
{
|
|
FileStorage fs = FileStorage( paramsFilename, FileStorage::READ );
|
|
if( fs.isOpened() )
|
|
{
|
|
descriptorMatcher->read( fs.root() );
|
|
fs.release();
|
|
}
|
|
}
|
|
return descriptorMatcher;
|
|
}
|
|
|
|
}
|