opencv/modules/ocl/test/test_kmeans.cpp
peng xiao 68a8a11161 Rewrite distanceToCenters.
It supports NORM_L1 distance types now and can
use user provided indices.
Also fixed a bug of kmeans where distance pointers should be float instead
 of double.

NORM_L2 changed to NORM_L2SQR, Accuracy and Perf tests are added

added ROI support in accuracy test of distanceToCenters
2013-10-25 15:02:00 +04:00

247 lines
8.2 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Erping Pang, pang_er_ping@163.com
// Xiaopeng Fu, fuxiaopeng2222@163.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_OPENCL
using namespace cvtest;
using namespace testing;
using namespace std;
using namespace cv;
#define OCL_KMEANS_USE_INITIAL_LABELS 1
#define OCL_KMEANS_PP_CENTERS 2
PARAM_TEST_CASE(Kmeans, int, int, int)
{
int type;
int K;
int flags;
cv::Mat src ;
ocl::oclMat d_src, d_dists;
Mat labels, centers;
ocl::oclMat d_labels, d_centers;
virtual void SetUp()
{
K = GET_PARAM(0);
type = GET_PARAM(1);
flags = GET_PARAM(2);
// MWIDTH=256, MHEIGHT=256. defined in utility.hpp
cv::Size size = cv::Size(MWIDTH, MHEIGHT);
src.create(size, type);
int row_idx = 0;
const int max_neighbour = MHEIGHT / K - 1;
CV_Assert(K <= MWIDTH);
for(int i = 0; i < K; i++ )
{
Mat center_row_header = src.row(row_idx);
center_row_header.setTo(0);
int nchannel = center_row_header.channels();
for(int j = 0; j < nchannel; j++)
center_row_header.at<float>(0, i*nchannel+j) = 50000.0;
for(int j = 0; (j < max_neighbour) ||
(i == K-1 && j < max_neighbour + MHEIGHT%K); j ++)
{
Mat cur_row_header = src.row(row_idx + 1 + j);
center_row_header.copyTo(cur_row_header);
Mat tmpmat = randomMat(cur_row_header.size(), cur_row_header.type(), -200, 200, false);
cur_row_header += tmpmat;
}
row_idx += 1 + max_neighbour;
}
}
};
OCL_TEST_P(Kmeans, Mat){
if(flags & KMEANS_USE_INITIAL_LABELS)
{
// inital a given labels
labels.create(src.rows, 1, CV_32S);
int *label = labels.ptr<int>();
for(int i = 0; i < src.rows; i++)
label[i] = rng.uniform(0, K);
d_labels.upload(labels);
}
d_src.upload(src);
for(int j = 0; j < LOOP_TIMES; j++)
{
kmeans(src, K, labels,
TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0),
1, flags, centers);
ocl::kmeans(d_src, K, d_labels,
TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0),
1, flags, d_centers);
Mat dd_labels(d_labels);
Mat dd_centers(d_centers);
if(flags & KMEANS_USE_INITIAL_LABELS)
{
EXPECT_MAT_NEAR(labels, dd_labels, 0);
EXPECT_MAT_NEAR(centers, dd_centers, 1e-3);
}
else
{
int row_idx = 0;
for(int i = 0; i < K; i++)
{
// verify lables with ground truth resutls
int label = labels.at<int>(row_idx);
int header_label = dd_labels.at<int>(row_idx);
for(int j = 0; (j < MHEIGHT/K)||(i == K-1 && j < MHEIGHT/K+MHEIGHT%K); j++)
{
ASSERT_NEAR(labels.at<int>(row_idx+j), label, 0);
ASSERT_NEAR(dd_labels.at<int>(row_idx+j), header_label, 0);
}
// verify centers
float *center = centers.ptr<float>(label);
float *header_center = dd_centers.ptr<float>(header_label);
for(int t = 0; t < centers.cols; t++)
ASSERT_NEAR(center[t], header_center[t], 1e-3);
row_idx += MHEIGHT/K;
}
}
}
}
INSTANTIATE_TEST_CASE_P(OCL_ML, Kmeans, Combine(
Values(3, 5, 8),
Values(CV_32FC1, CV_32FC2, CV_32FC4),
Values(OCL_KMEANS_USE_INITIAL_LABELS/*, OCL_KMEANS_PP_CENTERS*/)));
/////////////////////////////// DistanceToCenters //////////////////////////////////////////
CV_ENUM(DistType, NORM_L1, NORM_L2SQR);
PARAM_TEST_CASE(distanceToCenters, DistType, bool)
{
cv::Size size;
int distType;
bool useRoi;
cv::Mat src, centers, src_roi, centers_roi;
cv::ocl::oclMat ocl_src, ocl_centers, ocl_src_roi, ocl_centers_roi;
virtual void SetUp()
{
distType = GET_PARAM(0);
useRoi = GET_PARAM(1);
}
void random_roi()
{
Size roiSize_src = randomSize(10,1000);
Size roiSize_centers = randomSize(10, 1000);
roiSize_src.width = roiSize_centers.width;
Border srcBorder = randomBorder(0, useRoi ? 500 : 0);
randomSubMat(src, src_roi, roiSize_src, srcBorder, CV_32FC1, -SHRT_MAX, SHRT_MAX);
Border centersBorder = randomBorder(0, useRoi ? 500 : 0);
randomSubMat(centers, centers_roi, roiSize_centers, centersBorder, CV_32FC1, -SHRT_MAX, SHRT_MAX);
for(int i = 0; i<centers.rows; i++)
centers.at<float>(i, randomInt(0,centers.cols-1)) = (float)randomDouble(SHRT_MAX, INT_MAX);
generateOclMat(ocl_src, ocl_src_roi, src, roiSize_src, srcBorder);
generateOclMat(ocl_centers, ocl_centers_roi, centers, roiSize_centers, centersBorder);
}
};
OCL_TEST_P(distanceToCenters, Accuracy)
{
for(int j = 0; j< LOOP_TIMES; j++)
{
random_roi();
cv::ocl::oclMat ocl_dists;
cv::ocl::oclMat ocl_labels;
cv::ocl::distanceToCenters(ocl_dists,ocl_labels,ocl_src_roi, ocl_centers_roi, distType);
Mat labels, dists;
ocl_labels.download(labels);
ocl_dists.download(dists);
ASSERT_EQ(ocl_dists.cols, ocl_labels.rows);
Mat batch_dists;
cv::batchDistance(src_roi, centers_roi, batch_dists, CV_32FC1, noArray(), distType);
std::vector<double> gold_dists_v;
for(int i = 0; i<batch_dists.rows; i++)
{
Mat r = batch_dists.row(i);
double mVal;
Point mLoc;
minMaxLoc(r, &mVal, NULL, &mLoc, NULL);
int ocl_label = *(int*)labels.row(i).col(0).data;
ASSERT_EQ(mLoc.x, ocl_label);
gold_dists_v.push_back(mVal);
}
Mat gold_dists(gold_dists_v);
dists.convertTo(dists, CV_64FC1);
double relative_error = cv::norm(gold_dists.t(), dists, NORM_INF|NORM_RELATIVE);
ASSERT_LE(relative_error, 1e-5);
}
}
INSTANTIATE_TEST_CASE_P (OCL_ML, distanceToCenters, Combine(DistType::all(), Bool()) );
#endif