92 lines
3.3 KiB
C++
92 lines
3.3 KiB
C++
#include "opencv2/calib3d/calib3d.hpp"
|
|
#include "opencv2/features2d/features2d.hpp"
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
|
|
#include <cstdio>
|
|
|
|
using namespace cv;
|
|
|
|
IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, IplImage* img2,
|
|
const vector<KeyPoint>& features2, const vector<DMatch>& desc_idx);
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
if (argc != 5)
|
|
{
|
|
printf("Format: \n./generic_descriptor_match [image1] [image2] [algorithm] [XML params]\n");
|
|
printf("For example: ./generic_descriptor_match scene_l.bmp scene_r.bmp FERN fern_params.xml\n");
|
|
return 0;
|
|
}
|
|
|
|
std::string img1_name = std::string(argv[1]);
|
|
std::string img2_name = std::string(argv[2]);
|
|
std::string alg_name = std::string(argv[3]);
|
|
std::string params_filename = std::string(argv[4]);
|
|
|
|
Ptr<GenericDescriptorMatcher> descriptorMatcher = createGenericDescriptorMatcher(alg_name, params_filename);
|
|
if( descriptorMatcher == 0 )
|
|
{
|
|
printf ("Cannot create descriptor\n");
|
|
return 0;
|
|
}
|
|
|
|
//printf("Reading the images...\n");
|
|
IplImage* img1 = cvLoadImage(img1_name.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
|
|
IplImage* img2 = cvLoadImage(img2_name.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
|
|
|
|
// extract keypoints from the first image
|
|
SURF surf_extractor(5.0e3);
|
|
vector<KeyPoint> keypoints1;
|
|
|
|
// printf("Extracting keypoints\n");
|
|
surf_extractor(img1, Mat(), keypoints1);
|
|
|
|
printf("Extracted %d keypoints from the first image\n", (int)keypoints1.size());
|
|
|
|
vector<KeyPoint> keypoints2;
|
|
surf_extractor(img2, Mat(), keypoints2);
|
|
printf("Extracted %d keypoints from the second image\n", (int)keypoints2.size());
|
|
|
|
printf("Finding nearest neighbors... \n");
|
|
// find NN for each of keypoints2 in keypoints1
|
|
vector<DMatch> matches2to1;
|
|
descriptorMatcher->match( img2, keypoints2, img1, keypoints1, matches2to1 );
|
|
printf("Done\n");
|
|
|
|
IplImage* img_corr = DrawCorrespondences(img1, keypoints1, img2, keypoints2, matches2to1);
|
|
|
|
cvNamedWindow("correspondences", 1);
|
|
cvShowImage("correspondences", img_corr);
|
|
cvWaitKey(0);
|
|
|
|
cvReleaseImage(&img1);
|
|
cvReleaseImage(&img2);
|
|
cvReleaseImage(&img_corr);
|
|
}
|
|
|
|
IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, IplImage* img2,
|
|
const vector<KeyPoint>& features2, const vector<DMatch>& desc_idx)
|
|
{
|
|
IplImage* img_corr = cvCreateImage(cvSize(img1->width + img2->width, MAX(img1->height, img2->height)),
|
|
IPL_DEPTH_8U, 3);
|
|
cvSetImageROI(img_corr, cvRect(0, 0, img1->width, img1->height));
|
|
cvCvtColor(img1, img_corr, CV_GRAY2RGB);
|
|
cvSetImageROI(img_corr, cvRect(img1->width, 0, img2->width, img2->height));
|
|
cvCvtColor(img2, img_corr, CV_GRAY2RGB);
|
|
cvResetImageROI(img_corr);
|
|
|
|
for (size_t i = 0; i < features1.size(); i++)
|
|
{
|
|
cvCircle(img_corr, features1[i].pt, 3, CV_RGB(255, 0, 0));
|
|
}
|
|
|
|
for (size_t i = 0; i < features2.size(); i++)
|
|
{
|
|
CvPoint pt = cvPoint(cvRound(features2[i].pt.x + img1->width), cvRound(features2[i].pt.y));
|
|
cvCircle(img_corr, pt, 3, CV_RGB(255, 0, 0));
|
|
cvLine(img_corr, features1[desc_idx[i].trainIdx].pt, pt, CV_RGB(0, 255, 0));
|
|
}
|
|
|
|
return img_corr;
|
|
}
|