361 lines
11 KiB
C++
361 lines
11 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
#include "opencv2/videostab/global_motion.hpp"
|
|
|
|
using namespace std;
|
|
|
|
namespace cv
|
|
{
|
|
namespace videostab
|
|
{
|
|
|
|
static Mat estimateGlobMotionLeastSquaresTranslation(
|
|
int npoints, const Point2f *points0, const Point2f *points1, float *rmse)
|
|
{
|
|
Mat_<float> M = Mat::eye(3, 3, CV_32F);
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
M(0,2) += points1[i].x - points0[i].x;
|
|
M(1,2) += points1[i].y - points0[i].y;
|
|
}
|
|
M(0,2) /= npoints;
|
|
M(1,2) /= npoints;
|
|
if (rmse)
|
|
{
|
|
*rmse = 0;
|
|
for (int i = 0; i < npoints; ++i)
|
|
*rmse += sqr(points1[i].x - points0[i].x - M(0,2)) +
|
|
sqr(points1[i].y - points0[i].y - M(1,2));
|
|
*rmse = sqrt(*rmse / npoints);
|
|
}
|
|
return M;
|
|
}
|
|
|
|
|
|
static Mat estimateGlobMotionLeastSquaresTranslationAndScale(
|
|
int npoints, const Point2f *points0, const Point2f *points1, float *rmse)
|
|
{
|
|
Mat_<float> A(2*npoints, 3), b(2*npoints, 1);
|
|
float *a0, *a1;
|
|
Point2f p0, p1;
|
|
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
a0 = A[2*i];
|
|
a1 = A[2*i+1];
|
|
p0 = points0[i];
|
|
p1 = points1[i];
|
|
a0[0] = p0.x; a0[1] = 1; a0[2] = 0;
|
|
a1[0] = p0.y; a1[1] = 0; a1[2] = 1;
|
|
b(2*i,0) = p1.x;
|
|
b(2*i+1,0) = p1.y;
|
|
}
|
|
|
|
Mat_<float> sol;
|
|
solve(A, b, sol, DECOMP_SVD);
|
|
|
|
if (rmse)
|
|
*rmse = static_cast<float>(norm(A*sol, b, NORM_L2) / sqrt(static_cast<double>(npoints)));
|
|
|
|
Mat_<float> M = Mat::eye(3, 3, CV_32F);
|
|
M(0,0) = M(1,1) = sol(0,0);
|
|
M(0,2) = sol(1,0);
|
|
M(1,2) = sol(2,0);
|
|
return M;
|
|
}
|
|
|
|
|
|
static Mat estimateGlobMotionLeastSquaresLinearSimilarity(
|
|
int npoints, const Point2f *points0, const Point2f *points1, float *rmse)
|
|
{
|
|
Mat_<float> A(2*npoints, 4), b(2*npoints, 1);
|
|
float *a0, *a1;
|
|
Point2f p0, p1;
|
|
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
a0 = A[2*i];
|
|
a1 = A[2*i+1];
|
|
p0 = points0[i];
|
|
p1 = points1[i];
|
|
a0[0] = p0.x; a0[1] = p0.y; a0[2] = 1; a0[3] = 0;
|
|
a1[0] = p0.y; a1[1] = -p0.x; a1[2] = 0; a1[3] = 1;
|
|
b(2*i,0) = p1.x;
|
|
b(2*i+1,0) = p1.y;
|
|
}
|
|
|
|
Mat_<float> sol;
|
|
solve(A, b, sol, DECOMP_SVD);
|
|
|
|
if (rmse)
|
|
*rmse = static_cast<float>(norm(A*sol, b, NORM_L2) / sqrt(static_cast<double>(npoints)));
|
|
|
|
Mat_<float> M = Mat::eye(3, 3, CV_32F);
|
|
M(0,0) = M(1,1) = sol(0,0);
|
|
M(0,1) = sol(1,0);
|
|
M(1,0) = -sol(1,0);
|
|
M(0,2) = sol(2,0);
|
|
M(1,2) = sol(3,0);
|
|
return M;
|
|
}
|
|
|
|
|
|
static Mat estimateGlobMotionLeastSquaresAffine(
|
|
int npoints, const Point2f *points0, const Point2f *points1, float *rmse)
|
|
{
|
|
Mat_<float> A(2*npoints, 6), b(2*npoints, 1);
|
|
float *a0, *a1;
|
|
Point2f p0, p1;
|
|
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
a0 = A[2*i];
|
|
a1 = A[2*i+1];
|
|
p0 = points0[i];
|
|
p1 = points1[i];
|
|
a0[0] = p0.x; a0[1] = p0.y; a0[2] = 1; a0[3] = a0[4] = a0[5] = 0;
|
|
a1[0] = a1[1] = a1[2] = 0; a1[3] = p0.x; a1[4] = p0.y; a1[5] = 1;
|
|
b(2*i,0) = p1.x;
|
|
b(2*i+1,0) = p1.y;
|
|
}
|
|
|
|
Mat_<float> sol;
|
|
solve(A, b, sol, DECOMP_SVD);
|
|
|
|
if (rmse)
|
|
*rmse = static_cast<float>(norm(A*sol, b, NORM_L2) / sqrt(static_cast<double>(npoints)));
|
|
|
|
Mat_<float> M = Mat::eye(3, 3, CV_32F);
|
|
for (int i = 0, k = 0; i < 2; ++i)
|
|
for (int j = 0; j < 3; ++j, ++k)
|
|
M(i,j) = sol(k,0);
|
|
|
|
return M;
|
|
}
|
|
|
|
|
|
Mat estimateGlobalMotionLeastSquares(
|
|
const vector<Point2f> &points0, const vector<Point2f> &points1, int model, float *rmse)
|
|
{
|
|
CV_Assert(points0.size() == points1.size());
|
|
|
|
typedef Mat (*Impl)(int, const Point2f*, const Point2f*, float*);
|
|
static Impl impls[] = { estimateGlobMotionLeastSquaresTranslation,
|
|
estimateGlobMotionLeastSquaresTranslationAndScale,
|
|
estimateGlobMotionLeastSquaresLinearSimilarity,
|
|
estimateGlobMotionLeastSquaresAffine };
|
|
|
|
int npoints = static_cast<int>(points0.size());
|
|
return impls[model](npoints, &points0[0], &points1[0], rmse);
|
|
}
|
|
|
|
|
|
Mat estimateGlobalMotionRobust(
|
|
const vector<Point2f> &points0, const vector<Point2f> &points1, int model,
|
|
const RansacParams ¶ms, float *rmse, int *ninliers)
|
|
{
|
|
CV_Assert(points0.size() == points1.size());
|
|
|
|
typedef Mat (*Impl)(int, const Point2f*, const Point2f*, float*);
|
|
static Impl impls[] = { estimateGlobMotionLeastSquaresTranslation,
|
|
estimateGlobMotionLeastSquaresTranslationAndScale,
|
|
estimateGlobMotionLeastSquaresLinearSimilarity,
|
|
estimateGlobMotionLeastSquaresAffine };
|
|
|
|
const int npoints = static_cast<int>(points0.size());
|
|
const int niters = static_cast<int>(ceil(log(1 - params.prob) /
|
|
log(1 - pow(1 - params.eps, params.size))));
|
|
|
|
RNG rng(0);
|
|
vector<int> indices(params.size);
|
|
vector<Point2f> subset0(params.size), subset1(params.size);
|
|
vector<Point2f> subset0best(params.size), subset1best(params.size);
|
|
Mat_<float> bestM;
|
|
int ninliersMax = -1;
|
|
Point2f p0, p1;
|
|
float x, y;
|
|
|
|
for (int iter = 0; iter < niters; ++iter)
|
|
{
|
|
for (int i = 0; i < params.size; ++i)
|
|
{
|
|
bool ok = false;
|
|
while (!ok)
|
|
{
|
|
ok = true;
|
|
indices[i] = static_cast<unsigned>(rng) % npoints;
|
|
for (int j = 0; j < i; ++j)
|
|
if (indices[i] == indices[j])
|
|
{ ok = false; break; }
|
|
}
|
|
}
|
|
for (int i = 0; i < params.size; ++i)
|
|
{
|
|
subset0[i] = points0[indices[i]];
|
|
subset1[i] = points1[indices[i]];
|
|
}
|
|
|
|
Mat_<float> M = impls[model](params.size, &subset0[0], &subset1[0], 0);
|
|
|
|
int _ninliers = 0;
|
|
for (int i = 0; i < npoints; ++i)
|
|
{
|
|
p0 = points0[i]; p1 = points1[i];
|
|
x = M(0,0)*p0.x + M(0,1)*p0.y + M(0,2);
|
|
y = M(1,0)*p0.x + M(1,1)*p0.y + M(1,2);
|
|
if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh)
|
|
_ninliers++;
|
|
}
|
|
if (_ninliers >= ninliersMax)
|
|
{
|
|
bestM = M;
|
|
ninliersMax = _ninliers;
|
|
subset0best.swap(subset0);
|
|
subset1best.swap(subset1);
|
|
}
|
|
}
|
|
|
|
if (ninliersMax < params.size)
|
|
// compute rmse
|
|
bestM = impls[model](params.size, &subset0best[0], &subset1best[0], rmse);
|
|
else
|
|
{
|
|
subset0.resize(ninliersMax);
|
|
subset1.resize(ninliersMax);
|
|
for (int i = 0, j = 0; i < npoints; ++i)
|
|
{
|
|
p0 = points0[i]; p1 = points1[i];
|
|
x = bestM(0,0)*p0.x + bestM(0,1)*p0.y + bestM(0,2);
|
|
y = bestM(1,0)*p0.x + bestM(1,1)*p0.y + bestM(1,2);
|
|
if (sqr(x - p1.x) + sqr(y - p1.y) < params.thresh * params.thresh)
|
|
{
|
|
subset0[j] = p0;
|
|
subset1[j] = p1;
|
|
j++;
|
|
}
|
|
}
|
|
bestM = impls[model](ninliersMax, &subset0[0], &subset1[0], rmse);
|
|
}
|
|
|
|
if (ninliers)
|
|
*ninliers = ninliersMax;
|
|
|
|
return bestM;
|
|
}
|
|
|
|
|
|
PyrLkRobustMotionEstimator::PyrLkRobustMotionEstimator()
|
|
: ransacParams_(RansacParams::affine2dMotionStd())
|
|
{
|
|
setDetector(new GoodFeaturesToTrackDetector());
|
|
setOptFlowEstimator(new SparsePyrLkOptFlowEstimator());
|
|
setMotionModel(AFFINE);
|
|
setMaxRmse(0.5f);
|
|
setMinInlierRatio(0.1f);
|
|
}
|
|
|
|
|
|
Mat PyrLkRobustMotionEstimator::estimate(const Mat &frame0, const Mat &frame1)
|
|
{
|
|
detector_->detect(frame0, keypointsPrev_);
|
|
|
|
pointsPrev_.resize(keypointsPrev_.size());
|
|
for (size_t i = 0; i < keypointsPrev_.size(); ++i)
|
|
pointsPrev_[i] = keypointsPrev_[i].pt;
|
|
|
|
optFlowEstimator_->run(frame0, frame1, pointsPrev_, points_, status_, noArray());
|
|
|
|
size_t npoints = points_.size();
|
|
pointsPrevGood_.clear();
|
|
pointsPrevGood_.reserve(npoints);
|
|
pointsGood_.clear();
|
|
pointsGood_.reserve(npoints);
|
|
for (size_t i = 0; i < npoints; ++i)
|
|
{
|
|
if (status_[i])
|
|
{
|
|
pointsPrevGood_.push_back(pointsPrev_[i]);
|
|
pointsGood_.push_back(points_[i]);
|
|
}
|
|
}
|
|
|
|
float rmse;
|
|
int ninliers;
|
|
Mat M = estimateGlobalMotionRobust(
|
|
pointsPrevGood_, pointsGood_, motionModel_, ransacParams_, &rmse, &ninliers);
|
|
|
|
if (rmse > maxRmse_ || static_cast<float>(ninliers) / pointsGood_.size() < minInlierRatio_)
|
|
M = Mat::eye(3, 3, CV_32F);
|
|
|
|
return M;
|
|
}
|
|
|
|
|
|
Mat getMotion(int from, int to, const Mat *motions, int size)
|
|
{
|
|
Mat M = Mat::eye(3, 3, CV_32F);
|
|
if (to > from)
|
|
{
|
|
for (int i = from; i < to; ++i)
|
|
M = at(i, motions, size) * M;
|
|
}
|
|
else if (from > to)
|
|
{
|
|
for (int i = to; i < from; ++i)
|
|
M = at(i, motions, size) * M;
|
|
M = M.inv();
|
|
}
|
|
return M;
|
|
}
|
|
|
|
|
|
Mat getMotion(int from, int to, const vector<Mat> &motions)
|
|
{
|
|
return getMotion(from, to, &motions[0], (int)motions.size());
|
|
}
|
|
|
|
} // namespace videostab
|
|
} // namespace cv
|