1577 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1577 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * jchuff.c
 | |
|  *
 | |
|  * Copyright (C) 1991-1997, Thomas G. Lane.
 | |
|  * Modified 2006-2009 by Guido Vollbeding.
 | |
|  * This file is part of the Independent JPEG Group's software.
 | |
|  * For conditions of distribution and use, see the accompanying README file.
 | |
|  *
 | |
|  * This file contains Huffman entropy encoding routines.
 | |
|  * Both sequential and progressive modes are supported in this single module.
 | |
|  *
 | |
|  * Much of the complexity here has to do with supporting output suspension.
 | |
|  * If the data destination module demands suspension, we want to be able to
 | |
|  * back up to the start of the current MCU.  To do this, we copy state
 | |
|  * variables into local working storage, and update them back to the
 | |
|  * permanent JPEG objects only upon successful completion of an MCU.
 | |
|  *
 | |
|  * We do not support output suspension for the progressive JPEG mode, since
 | |
|  * the library currently does not allow multiple-scan files to be written
 | |
|  * with output suspension.
 | |
|  */
 | |
| 
 | |
| #define JPEG_INTERNALS
 | |
| #include "jinclude.h"
 | |
| #include "jpeglib.h"
 | |
| 
 | |
| 
 | |
| /* The legal range of a DCT coefficient is
 | |
|  *  -1024 .. +1023  for 8-bit data;
 | |
|  * -16384 .. +16383 for 12-bit data.
 | |
|  * Hence the magnitude should always fit in 10 or 14 bits respectively.
 | |
|  */
 | |
| 
 | |
| #if BITS_IN_JSAMPLE == 8
 | |
| #define MAX_COEF_BITS 10
 | |
| #else
 | |
| #define MAX_COEF_BITS 14
 | |
| #endif
 | |
| 
 | |
| /* Derived data constructed for each Huffman table */
 | |
| 
 | |
| typedef struct {
 | |
|   unsigned int ehufco[256];	/* code for each symbol */
 | |
|   char ehufsi[256];		/* length of code for each symbol */
 | |
|   /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
 | |
| } c_derived_tbl;
 | |
| 
 | |
| 
 | |
| /* Expanded entropy encoder object for Huffman encoding.
 | |
|  *
 | |
|  * The savable_state subrecord contains fields that change within an MCU,
 | |
|  * but must not be updated permanently until we complete the MCU.
 | |
|  */
 | |
| 
 | |
| typedef struct {
 | |
|   INT32 put_buffer;		/* current bit-accumulation buffer */
 | |
|   int put_bits;			/* # of bits now in it */
 | |
|   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
 | |
| } savable_state;
 | |
| 
 | |
| /* This macro is to work around compilers with missing or broken
 | |
|  * structure assignment.  You'll need to fix this code if you have
 | |
|  * such a compiler and you change MAX_COMPS_IN_SCAN.
 | |
|  */
 | |
| 
 | |
| #ifndef NO_STRUCT_ASSIGN
 | |
| #define ASSIGN_STATE(dest,src)  ((dest) = (src))
 | |
| #else
 | |
| #if MAX_COMPS_IN_SCAN == 4
 | |
| #define ASSIGN_STATE(dest,src)  \
 | |
|         ((dest).put_buffer = (src).put_buffer, \
 | |
|          (dest).put_bits = (src).put_bits, \
 | |
|          (dest).last_dc_val[0] = (src).last_dc_val[0], \
 | |
|          (dest).last_dc_val[1] = (src).last_dc_val[1], \
 | |
|          (dest).last_dc_val[2] = (src).last_dc_val[2], \
 | |
|          (dest).last_dc_val[3] = (src).last_dc_val[3])
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| typedef struct {
 | |
|   struct jpeg_entropy_encoder pub; /* public fields */
 | |
| 
 | |
|   savable_state saved;		/* Bit buffer & DC state at start of MCU */
 | |
| 
 | |
|   /* These fields are NOT loaded into local working state. */
 | |
|   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
 | |
|   int next_restart_num;		/* next restart number to write (0-7) */
 | |
| 
 | |
|   /* Pointers to derived tables (these workspaces have image lifespan) */
 | |
|   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
 | |
|   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
 | |
| 
 | |
|   /* Statistics tables for optimization */
 | |
|   long * dc_count_ptrs[NUM_HUFF_TBLS];
 | |
|   long * ac_count_ptrs[NUM_HUFF_TBLS];
 | |
| 
 | |
|   /* Following fields used only in progressive mode */
 | |
| 
 | |
|   /* Mode flag: TRUE for optimization, FALSE for actual data output */
 | |
|   boolean gather_statistics;
 | |
| 
 | |
|   /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
 | |
|    */
 | |
|   JOCTET * next_output_byte;	/* => next byte to write in buffer */
 | |
|   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
 | |
|   j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */
 | |
| 
 | |
|   /* Coding status for AC components */
 | |
|   int ac_tbl_no;		/* the table number of the single component */
 | |
|   unsigned int EOBRUN;		/* run length of EOBs */
 | |
|   unsigned int BE;		/* # of buffered correction bits before MCU */
 | |
|   char * bit_buffer;		/* buffer for correction bits (1 per char) */
 | |
|   /* packing correction bits tightly would save some space but cost time... */
 | |
| } huff_entropy_encoder;
 | |
| 
 | |
| typedef huff_entropy_encoder * huff_entropy_ptr;
 | |
| 
 | |
| /* Working state while writing an MCU (sequential mode).
 | |
|  * This struct contains all the fields that are needed by subroutines.
 | |
|  */
 | |
| 
 | |
| typedef struct {
 | |
|   JOCTET * next_output_byte;	/* => next byte to write in buffer */
 | |
|   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
 | |
|   savable_state cur;		/* Current bit buffer & DC state */
 | |
|   j_compress_ptr cinfo;		/* dump_buffer needs access to this */
 | |
| } working_state;
 | |
| 
 | |
| /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
 | |
|  * buffer can hold.  Larger sizes may slightly improve compression, but
 | |
|  * 1000 is already well into the realm of overkill.
 | |
|  * The minimum safe size is 64 bits.
 | |
|  */
 | |
| 
 | |
| #define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */
 | |
| 
 | |
| /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
 | |
|  * We assume that int right shift is unsigned if INT32 right shift is,
 | |
|  * which should be safe.
 | |
|  */
 | |
| 
 | |
| #ifdef RIGHT_SHIFT_IS_UNSIGNED
 | |
| #define ISHIFT_TEMPS	int ishift_temp;
 | |
| #define IRIGHT_SHIFT(x,shft)  \
 | |
|         ((ishift_temp = (x)) < 0 ? \
 | |
|          (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
 | |
|          (ishift_temp >> (shft)))
 | |
| #else
 | |
| #define ISHIFT_TEMPS
 | |
| #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Compute the derived values for a Huffman table.
 | |
|  * This routine also performs some validation checks on the table.
 | |
|  */
 | |
| 
 | |
| LOCAL(void)
 | |
| jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
 | |
|                          c_derived_tbl ** pdtbl)
 | |
| {
 | |
|   JHUFF_TBL *htbl;
 | |
|   c_derived_tbl *dtbl;
 | |
|   int p, i, l, lastp, si, maxsymbol;
 | |
|   char huffsize[257];
 | |
|   unsigned int huffcode[257];
 | |
|   unsigned int code;
 | |
| 
 | |
|   /* Note that huffsize[] and huffcode[] are filled in code-length order,
 | |
|    * paralleling the order of the symbols themselves in htbl->huffval[].
 | |
|    */
 | |
| 
 | |
|   /* Find the input Huffman table */
 | |
|   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
 | |
|     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 | |
|   htbl =
 | |
|     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
 | |
|   if (htbl == NULL)
 | |
|     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
 | |
| 
 | |
|   /* Allocate a workspace if we haven't already done so. */
 | |
|   if (*pdtbl == NULL)
 | |
|     *pdtbl = (c_derived_tbl *)
 | |
|       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | |
|                                   SIZEOF(c_derived_tbl));
 | |
|   dtbl = *pdtbl;
 | |
| 
 | |
|   /* Figure C.1: make table of Huffman code length for each symbol */
 | |
| 
 | |
|   p = 0;
 | |
|   for (l = 1; l <= 16; l++) {
 | |
|     i = (int) htbl->bits[l];
 | |
|     if (i < 0 || p + i > 256)	/* protect against table overrun */
 | |
|       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 | |
|     while (i--)
 | |
|       huffsize[p++] = (char) l;
 | |
|   }
 | |
|   huffsize[p] = 0;
 | |
|   lastp = p;
 | |
| 
 | |
|   /* Figure C.2: generate the codes themselves */
 | |
|   /* We also validate that the counts represent a legal Huffman code tree. */
 | |
| 
 | |
|   code = 0;
 | |
|   si = huffsize[0];
 | |
|   p = 0;
 | |
|   while (huffsize[p]) {
 | |
|     while (((int) huffsize[p]) == si) {
 | |
|       huffcode[p++] = code;
 | |
|       code++;
 | |
|     }
 | |
|     /* code is now 1 more than the last code used for codelength si; but
 | |
|      * it must still fit in si bits, since no code is allowed to be all ones.
 | |
|      */
 | |
|     if (((INT32) code) >= (((INT32) 1) << si))
 | |
|       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 | |
|     code <<= 1;
 | |
|     si++;
 | |
|   }
 | |
| 
 | |
|   /* Figure C.3: generate encoding tables */
 | |
|   /* These are code and size indexed by symbol value */
 | |
| 
 | |
|   /* Set all codeless symbols to have code length 0;
 | |
|    * this lets us detect duplicate VAL entries here, and later
 | |
|    * allows emit_bits to detect any attempt to emit such symbols.
 | |
|    */
 | |
|   MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
 | |
| 
 | |
|   /* This is also a convenient place to check for out-of-range
 | |
|    * and duplicated VAL entries.  We allow 0..255 for AC symbols
 | |
|    * but only 0..15 for DC.  (We could constrain them further
 | |
|    * based on data depth and mode, but this seems enough.)
 | |
|    */
 | |
|   maxsymbol = isDC ? 15 : 255;
 | |
| 
 | |
|   for (p = 0; p < lastp; p++) {
 | |
|     i = htbl->huffval[p];
 | |
|     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
 | |
|       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
 | |
|     dtbl->ehufco[i] = huffcode[p];
 | |
|     dtbl->ehufsi[i] = huffsize[p];
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Outputting bytes to the file.
 | |
|  * NB: these must be called only when actually outputting,
 | |
|  * that is, entropy->gather_statistics == FALSE.
 | |
|  */
 | |
| 
 | |
| /* Emit a byte, taking 'action' if must suspend. */
 | |
| #define emit_byte_s(state,val,action)  \
 | |
|         { *(state)->next_output_byte++ = (JOCTET) (val);  \
 | |
|           if (--(state)->free_in_buffer == 0)  \
 | |
|             if (! dump_buffer_s(state))  \
 | |
|               { action; } }
 | |
| 
 | |
| /* Emit a byte */
 | |
| #define emit_byte_e(entropy,val)  \
 | |
|         { *(entropy)->next_output_byte++ = (JOCTET) (val);  \
 | |
|           if (--(entropy)->free_in_buffer == 0)  \
 | |
|             dump_buffer_e(entropy); }
 | |
| 
 | |
| 
 | |
| LOCAL(boolean)
 | |
| dump_buffer_s (working_state * state)
 | |
| /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
 | |
| {
 | |
|   struct jpeg_destination_mgr * dest = state->cinfo->dest;
 | |
| 
 | |
|   if (! (*dest->empty_output_buffer) (state->cinfo))
 | |
|     return FALSE;
 | |
|   /* After a successful buffer dump, must reset buffer pointers */
 | |
|   state->next_output_byte = dest->next_output_byte;
 | |
|   state->free_in_buffer = dest->free_in_buffer;
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| LOCAL(void)
 | |
| dump_buffer_e (huff_entropy_ptr entropy)
 | |
| /* Empty the output buffer; we do not support suspension in this case. */
 | |
| {
 | |
|   struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
 | |
| 
 | |
|   if (! (*dest->empty_output_buffer) (entropy->cinfo))
 | |
|     ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
 | |
|   /* After a successful buffer dump, must reset buffer pointers */
 | |
|   entropy->next_output_byte = dest->next_output_byte;
 | |
|   entropy->free_in_buffer = dest->free_in_buffer;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Outputting bits to the file */
 | |
| 
 | |
| /* Only the right 24 bits of put_buffer are used; the valid bits are
 | |
|  * left-justified in this part.  At most 16 bits can be passed to emit_bits
 | |
|  * in one call, and we never retain more than 7 bits in put_buffer
 | |
|  * between calls, so 24 bits are sufficient.
 | |
|  */
 | |
| 
 | |
| INLINE
 | |
| LOCAL(boolean)
 | |
| emit_bits_s (working_state * state, unsigned int code, int size)
 | |
| /* Emit some bits; return TRUE if successful, FALSE if must suspend */
 | |
| {
 | |
|   /* This routine is heavily used, so it's worth coding tightly. */
 | |
|   register INT32 put_buffer = (INT32) code;
 | |
|   register int put_bits = state->cur.put_bits;
 | |
| 
 | |
|   /* if size is 0, caller used an invalid Huffman table entry */
 | |
|   if (size == 0)
 | |
|     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
 | |
| 
 | |
|   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
 | |
| 
 | |
|   put_bits += size;		/* new number of bits in buffer */
 | |
| 
 | |
|   put_buffer <<= 24 - put_bits; /* align incoming bits */
 | |
| 
 | |
|   put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
 | |
| 
 | |
|   while (put_bits >= 8) {
 | |
|     int c = (int) ((put_buffer >> 16) & 0xFF);
 | |
| 
 | |
|     emit_byte_s(state, c, return FALSE);
 | |
|     if (c == 0xFF) {		/* need to stuff a zero byte? */
 | |
|       emit_byte_s(state, 0, return FALSE);
 | |
|     }
 | |
|     put_buffer <<= 8;
 | |
|     put_bits -= 8;
 | |
|   }
 | |
| 
 | |
|   state->cur.put_buffer = put_buffer; /* update state variables */
 | |
|   state->cur.put_bits = put_bits;
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| INLINE
 | |
| LOCAL(void)
 | |
| emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
 | |
| /* Emit some bits, unless we are in gather mode */
 | |
| {
 | |
|   /* This routine is heavily used, so it's worth coding tightly. */
 | |
|   register INT32 put_buffer = (INT32) code;
 | |
|   register int put_bits = entropy->saved.put_bits;
 | |
| 
 | |
|   /* if size is 0, caller used an invalid Huffman table entry */
 | |
|   if (size == 0)
 | |
|     ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
 | |
| 
 | |
|   if (entropy->gather_statistics)
 | |
|     return;			/* do nothing if we're only getting stats */
 | |
| 
 | |
|   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
 | |
| 
 | |
|   put_bits += size;		/* new number of bits in buffer */
 | |
| 
 | |
|   put_buffer <<= 24 - put_bits; /* align incoming bits */
 | |
| 
 | |
|   /* and merge with old buffer contents */
 | |
|   put_buffer |= entropy->saved.put_buffer;
 | |
| 
 | |
|   while (put_bits >= 8) {
 | |
|     int c = (int) ((put_buffer >> 16) & 0xFF);
 | |
| 
 | |
|     emit_byte_e(entropy, c);
 | |
|     if (c == 0xFF) {		/* need to stuff a zero byte? */
 | |
|       emit_byte_e(entropy, 0);
 | |
|     }
 | |
|     put_buffer <<= 8;
 | |
|     put_bits -= 8;
 | |
|   }
 | |
| 
 | |
|   entropy->saved.put_buffer = put_buffer; /* update variables */
 | |
|   entropy->saved.put_bits = put_bits;
 | |
| }
 | |
| 
 | |
| 
 | |
| LOCAL(boolean)
 | |
| flush_bits_s (working_state * state)
 | |
| {
 | |
|   if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */
 | |
|     return FALSE;
 | |
|   state->cur.put_buffer = 0;	     /* and reset bit-buffer to empty */
 | |
|   state->cur.put_bits = 0;
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| LOCAL(void)
 | |
| flush_bits_e (huff_entropy_ptr entropy)
 | |
| {
 | |
|   emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
 | |
|   entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
 | |
|   entropy->saved.put_bits = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Emit (or just count) a Huffman symbol.
 | |
|  */
 | |
| 
 | |
| INLINE
 | |
| LOCAL(void)
 | |
| emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
 | |
| {
 | |
|   if (entropy->gather_statistics)
 | |
|     entropy->dc_count_ptrs[tbl_no][symbol]++;
 | |
|   else {
 | |
|     c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no];
 | |
|     emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| INLINE
 | |
| LOCAL(void)
 | |
| emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
 | |
| {
 | |
|   if (entropy->gather_statistics)
 | |
|     entropy->ac_count_ptrs[tbl_no][symbol]++;
 | |
|   else {
 | |
|     c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no];
 | |
|     emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Emit bits from a correction bit buffer.
 | |
|  */
 | |
| 
 | |
| LOCAL(void)
 | |
| emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
 | |
|                     unsigned int nbits)
 | |
| {
 | |
|   if (entropy->gather_statistics)
 | |
|     return;			/* no real work */
 | |
| 
 | |
|   while (nbits > 0) {
 | |
|     emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
 | |
|     bufstart++;
 | |
|     nbits--;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Emit any pending EOBRUN symbol.
 | |
|  */
 | |
| 
 | |
| LOCAL(void)
 | |
| emit_eobrun (huff_entropy_ptr entropy)
 | |
| {
 | |
|   register int temp, nbits;
 | |
| 
 | |
|   if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */
 | |
|     temp = entropy->EOBRUN;
 | |
|     nbits = 0;
 | |
|     while ((temp >>= 1))
 | |
|       nbits++;
 | |
|     /* safety check: shouldn't happen given limited correction-bit buffer */
 | |
|     if (nbits > 14)
 | |
|       ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
 | |
| 
 | |
|     emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
 | |
|     if (nbits)
 | |
|       emit_bits_e(entropy, entropy->EOBRUN, nbits);
 | |
| 
 | |
|     entropy->EOBRUN = 0;
 | |
| 
 | |
|     /* Emit any buffered correction bits */
 | |
|     emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
 | |
|     entropy->BE = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Emit a restart marker & resynchronize predictions.
 | |
|  */
 | |
| 
 | |
| LOCAL(boolean)
 | |
| emit_restart_s (working_state * state, int restart_num)
 | |
| {
 | |
|   int ci;
 | |
| 
 | |
|   if (! flush_bits_s(state))
 | |
|     return FALSE;
 | |
| 
 | |
|   emit_byte_s(state, 0xFF, return FALSE);
 | |
|   emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE);
 | |
| 
 | |
|   /* Re-initialize DC predictions to 0 */
 | |
|   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
 | |
|     state->cur.last_dc_val[ci] = 0;
 | |
| 
 | |
|   /* The restart counter is not updated until we successfully write the MCU. */
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| LOCAL(void)
 | |
| emit_restart_e (huff_entropy_ptr entropy, int restart_num)
 | |
| {
 | |
|   int ci;
 | |
| 
 | |
|   emit_eobrun(entropy);
 | |
| 
 | |
|   if (! entropy->gather_statistics) {
 | |
|     flush_bits_e(entropy);
 | |
|     emit_byte_e(entropy, 0xFF);
 | |
|     emit_byte_e(entropy, JPEG_RST0 + restart_num);
 | |
|   }
 | |
| 
 | |
|   if (entropy->cinfo->Ss == 0) {
 | |
|     /* Re-initialize DC predictions to 0 */
 | |
|     for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
 | |
|       entropy->saved.last_dc_val[ci] = 0;
 | |
|   } else {
 | |
|     /* Re-initialize all AC-related fields to 0 */
 | |
|     entropy->EOBRUN = 0;
 | |
|     entropy->BE = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * MCU encoding for DC initial scan (either spectral selection,
 | |
|  * or first pass of successive approximation).
 | |
|  */
 | |
| 
 | |
| METHODDEF(boolean)
 | |
| encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 | |
| {
 | |
|   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | |
|   register int temp, temp2;
 | |
|   register int nbits;
 | |
|   int blkn, ci;
 | |
|   int Al = cinfo->Al;
 | |
|   JBLOCKROW block;
 | |
|   jpeg_component_info * compptr;
 | |
|   ISHIFT_TEMPS
 | |
| 
 | |
|   entropy->next_output_byte = cinfo->dest->next_output_byte;
 | |
|   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 | |
| 
 | |
|   /* Emit restart marker if needed */
 | |
|   if (cinfo->restart_interval)
 | |
|     if (entropy->restarts_to_go == 0)
 | |
|       emit_restart_e(entropy, entropy->next_restart_num);
 | |
| 
 | |
|   /* Encode the MCU data blocks */
 | |
|   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 | |
|     block = MCU_data[blkn];
 | |
|     ci = cinfo->MCU_membership[blkn];
 | |
|     compptr = cinfo->cur_comp_info[ci];
 | |
| 
 | |
|     /* Compute the DC value after the required point transform by Al.
 | |
|      * This is simply an arithmetic right shift.
 | |
|      */
 | |
|     temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
 | |
| 
 | |
|     /* DC differences are figured on the point-transformed values. */
 | |
|     temp = temp2 - entropy->saved.last_dc_val[ci];
 | |
|     entropy->saved.last_dc_val[ci] = temp2;
 | |
| 
 | |
|     /* Encode the DC coefficient difference per section G.1.2.1 */
 | |
|     temp2 = temp;
 | |
|     if (temp < 0) {
 | |
|       temp = -temp;		/* temp is abs value of input */
 | |
|       /* For a negative input, want temp2 = bitwise complement of abs(input) */
 | |
|       /* This code assumes we are on a two's complement machine */
 | |
|       temp2--;
 | |
|     }
 | |
| 
 | |
|     /* Find the number of bits needed for the magnitude of the coefficient */
 | |
|     nbits = 0;
 | |
|     while (temp) {
 | |
|       nbits++;
 | |
|       temp >>= 1;
 | |
|     }
 | |
|     /* Check for out-of-range coefficient values.
 | |
|      * Since we're encoding a difference, the range limit is twice as much.
 | |
|      */
 | |
|     if (nbits > MAX_COEF_BITS+1)
 | |
|       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
 | |
| 
 | |
|     /* Count/emit the Huffman-coded symbol for the number of bits */
 | |
|     emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits);
 | |
| 
 | |
|     /* Emit that number of bits of the value, if positive, */
 | |
|     /* or the complement of its magnitude, if negative. */
 | |
|     if (nbits)			/* emit_bits rejects calls with size 0 */
 | |
|       emit_bits_e(entropy, (unsigned int) temp2, nbits);
 | |
|   }
 | |
| 
 | |
|   cinfo->dest->next_output_byte = entropy->next_output_byte;
 | |
|   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 | |
| 
 | |
|   /* Update restart-interval state too */
 | |
|   if (cinfo->restart_interval) {
 | |
|     if (entropy->restarts_to_go == 0) {
 | |
|       entropy->restarts_to_go = cinfo->restart_interval;
 | |
|       entropy->next_restart_num++;
 | |
|       entropy->next_restart_num &= 7;
 | |
|     }
 | |
|     entropy->restarts_to_go--;
 | |
|   }
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * MCU encoding for AC initial scan (either spectral selection,
 | |
|  * or first pass of successive approximation).
 | |
|  */
 | |
| 
 | |
| METHODDEF(boolean)
 | |
| encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 | |
| {
 | |
|   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | |
|   register int temp, temp2;
 | |
|   register int nbits;
 | |
|   register int r, k;
 | |
|   int Se, Al;
 | |
|   const int * natural_order;
 | |
|   JBLOCKROW block;
 | |
| 
 | |
|   entropy->next_output_byte = cinfo->dest->next_output_byte;
 | |
|   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 | |
| 
 | |
|   /* Emit restart marker if needed */
 | |
|   if (cinfo->restart_interval)
 | |
|     if (entropy->restarts_to_go == 0)
 | |
|       emit_restart_e(entropy, entropy->next_restart_num);
 | |
| 
 | |
|   Se = cinfo->Se;
 | |
|   Al = cinfo->Al;
 | |
|   natural_order = cinfo->natural_order;
 | |
| 
 | |
|   /* Encode the MCU data block */
 | |
|   block = MCU_data[0];
 | |
| 
 | |
|   /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
 | |
| 
 | |
|   r = 0;			/* r = run length of zeros */
 | |
| 
 | |
|   for (k = cinfo->Ss; k <= Se; k++) {
 | |
|     if ((temp = (*block)[natural_order[k]]) == 0) {
 | |
|       r++;
 | |
|       continue;
 | |
|     }
 | |
|     /* We must apply the point transform by Al.  For AC coefficients this
 | |
|      * is an integer division with rounding towards 0.  To do this portably
 | |
|      * in C, we shift after obtaining the absolute value; so the code is
 | |
|      * interwoven with finding the abs value (temp) and output bits (temp2).
 | |
|      */
 | |
|     if (temp < 0) {
 | |
|       temp = -temp;		/* temp is abs value of input */
 | |
|       temp >>= Al;		/* apply the point transform */
 | |
|       /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
 | |
|       temp2 = ~temp;
 | |
|     } else {
 | |
|       temp >>= Al;		/* apply the point transform */
 | |
|       temp2 = temp;
 | |
|     }
 | |
|     /* Watch out for case that nonzero coef is zero after point transform */
 | |
|     if (temp == 0) {
 | |
|       r++;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* Emit any pending EOBRUN */
 | |
|     if (entropy->EOBRUN > 0)
 | |
|       emit_eobrun(entropy);
 | |
|     /* if run length > 15, must emit special run-length-16 codes (0xF0) */
 | |
|     while (r > 15) {
 | |
|       emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
 | |
|       r -= 16;
 | |
|     }
 | |
| 
 | |
|     /* Find the number of bits needed for the magnitude of the coefficient */
 | |
|     nbits = 1;			/* there must be at least one 1 bit */
 | |
|     while ((temp >>= 1))
 | |
|       nbits++;
 | |
|     /* Check for out-of-range coefficient values */
 | |
|     if (nbits > MAX_COEF_BITS)
 | |
|       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
 | |
| 
 | |
|     /* Count/emit Huffman symbol for run length / number of bits */
 | |
|     emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
 | |
| 
 | |
|     /* Emit that number of bits of the value, if positive, */
 | |
|     /* or the complement of its magnitude, if negative. */
 | |
|     emit_bits_e(entropy, (unsigned int) temp2, nbits);
 | |
| 
 | |
|     r = 0;			/* reset zero run length */
 | |
|   }
 | |
| 
 | |
|   if (r > 0) {			/* If there are trailing zeroes, */
 | |
|     entropy->EOBRUN++;		/* count an EOB */
 | |
|     if (entropy->EOBRUN == 0x7FFF)
 | |
|       emit_eobrun(entropy);	/* force it out to avoid overflow */
 | |
|   }
 | |
| 
 | |
|   cinfo->dest->next_output_byte = entropy->next_output_byte;
 | |
|   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 | |
| 
 | |
|   /* Update restart-interval state too */
 | |
|   if (cinfo->restart_interval) {
 | |
|     if (entropy->restarts_to_go == 0) {
 | |
|       entropy->restarts_to_go = cinfo->restart_interval;
 | |
|       entropy->next_restart_num++;
 | |
|       entropy->next_restart_num &= 7;
 | |
|     }
 | |
|     entropy->restarts_to_go--;
 | |
|   }
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * MCU encoding for DC successive approximation refinement scan.
 | |
|  * Note: we assume such scans can be multi-component, although the spec
 | |
|  * is not very clear on the point.
 | |
|  */
 | |
| 
 | |
| METHODDEF(boolean)
 | |
| encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 | |
| {
 | |
|   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | |
|   register int temp;
 | |
|   int blkn;
 | |
|   int Al = cinfo->Al;
 | |
|   JBLOCKROW block;
 | |
| 
 | |
|   entropy->next_output_byte = cinfo->dest->next_output_byte;
 | |
|   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 | |
| 
 | |
|   /* Emit restart marker if needed */
 | |
|   if (cinfo->restart_interval)
 | |
|     if (entropy->restarts_to_go == 0)
 | |
|       emit_restart_e(entropy, entropy->next_restart_num);
 | |
| 
 | |
|   /* Encode the MCU data blocks */
 | |
|   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 | |
|     block = MCU_data[blkn];
 | |
| 
 | |
|     /* We simply emit the Al'th bit of the DC coefficient value. */
 | |
|     temp = (*block)[0];
 | |
|     emit_bits_e(entropy, (unsigned int) (temp >> Al), 1);
 | |
|   }
 | |
| 
 | |
|   cinfo->dest->next_output_byte = entropy->next_output_byte;
 | |
|   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 | |
| 
 | |
|   /* Update restart-interval state too */
 | |
|   if (cinfo->restart_interval) {
 | |
|     if (entropy->restarts_to_go == 0) {
 | |
|       entropy->restarts_to_go = cinfo->restart_interval;
 | |
|       entropy->next_restart_num++;
 | |
|       entropy->next_restart_num &= 7;
 | |
|     }
 | |
|     entropy->restarts_to_go--;
 | |
|   }
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * MCU encoding for AC successive approximation refinement scan.
 | |
|  */
 | |
| 
 | |
| METHODDEF(boolean)
 | |
| encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 | |
| {
 | |
|   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | |
|   register int temp;
 | |
|   register int r, k;
 | |
|   int EOB;
 | |
|   char *BR_buffer;
 | |
|   unsigned int BR;
 | |
|   int Se, Al;
 | |
|   const int * natural_order;
 | |
|   JBLOCKROW block;
 | |
|   int absvalues[DCTSIZE2];
 | |
| 
 | |
|   entropy->next_output_byte = cinfo->dest->next_output_byte;
 | |
|   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 | |
| 
 | |
|   /* Emit restart marker if needed */
 | |
|   if (cinfo->restart_interval)
 | |
|     if (entropy->restarts_to_go == 0)
 | |
|       emit_restart_e(entropy, entropy->next_restart_num);
 | |
| 
 | |
|   Se = cinfo->Se;
 | |
|   Al = cinfo->Al;
 | |
|   natural_order = cinfo->natural_order;
 | |
| 
 | |
|   /* Encode the MCU data block */
 | |
|   block = MCU_data[0];
 | |
| 
 | |
|   /* It is convenient to make a pre-pass to determine the transformed
 | |
|    * coefficients' absolute values and the EOB position.
 | |
|    */
 | |
|   EOB = 0;
 | |
|   for (k = cinfo->Ss; k <= Se; k++) {
 | |
|     temp = (*block)[natural_order[k]];
 | |
|     /* We must apply the point transform by Al.  For AC coefficients this
 | |
|      * is an integer division with rounding towards 0.  To do this portably
 | |
|      * in C, we shift after obtaining the absolute value.
 | |
|      */
 | |
|     if (temp < 0)
 | |
|       temp = -temp;		/* temp is abs value of input */
 | |
|     temp >>= Al;		/* apply the point transform */
 | |
|     absvalues[k] = temp;	/* save abs value for main pass */
 | |
|     if (temp == 1)
 | |
|       EOB = k;			/* EOB = index of last newly-nonzero coef */
 | |
|   }
 | |
| 
 | |
|   /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
 | |
| 
 | |
|   r = 0;			/* r = run length of zeros */
 | |
|   BR = 0;			/* BR = count of buffered bits added now */
 | |
|   BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
 | |
| 
 | |
|   for (k = cinfo->Ss; k <= Se; k++) {
 | |
|     if ((temp = absvalues[k]) == 0) {
 | |
|       r++;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* Emit any required ZRLs, but not if they can be folded into EOB */
 | |
|     while (r > 15 && k <= EOB) {
 | |
|       /* emit any pending EOBRUN and the BE correction bits */
 | |
|       emit_eobrun(entropy);
 | |
|       /* Emit ZRL */
 | |
|       emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
 | |
|       r -= 16;
 | |
|       /* Emit buffered correction bits that must be associated with ZRL */
 | |
|       emit_buffered_bits(entropy, BR_buffer, BR);
 | |
|       BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
 | |
|       BR = 0;
 | |
|     }
 | |
| 
 | |
|     /* If the coef was previously nonzero, it only needs a correction bit.
 | |
|      * NOTE: a straight translation of the spec's figure G.7 would suggest
 | |
|      * that we also need to test r > 15.  But if r > 15, we can only get here
 | |
|      * if k > EOB, which implies that this coefficient is not 1.
 | |
|      */
 | |
|     if (temp > 1) {
 | |
|       /* The correction bit is the next bit of the absolute value. */
 | |
|       BR_buffer[BR++] = (char) (temp & 1);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* Emit any pending EOBRUN and the BE correction bits */
 | |
|     emit_eobrun(entropy);
 | |
| 
 | |
|     /* Count/emit Huffman symbol for run length / number of bits */
 | |
|     emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
 | |
| 
 | |
|     /* Emit output bit for newly-nonzero coef */
 | |
|     temp = ((*block)[natural_order[k]] < 0) ? 0 : 1;
 | |
|     emit_bits_e(entropy, (unsigned int) temp, 1);
 | |
| 
 | |
|     /* Emit buffered correction bits that must be associated with this code */
 | |
|     emit_buffered_bits(entropy, BR_buffer, BR);
 | |
|     BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
 | |
|     BR = 0;
 | |
|     r = 0;			/* reset zero run length */
 | |
|   }
 | |
| 
 | |
|   if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */
 | |
|     entropy->EOBRUN++;		/* count an EOB */
 | |
|     entropy->BE += BR;		/* concat my correction bits to older ones */
 | |
|     /* We force out the EOB if we risk either:
 | |
|      * 1. overflow of the EOB counter;
 | |
|      * 2. overflow of the correction bit buffer during the next MCU.
 | |
|      */
 | |
|     if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
 | |
|       emit_eobrun(entropy);
 | |
|   }
 | |
| 
 | |
|   cinfo->dest->next_output_byte = entropy->next_output_byte;
 | |
|   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 | |
| 
 | |
|   /* Update restart-interval state too */
 | |
|   if (cinfo->restart_interval) {
 | |
|     if (entropy->restarts_to_go == 0) {
 | |
|       entropy->restarts_to_go = cinfo->restart_interval;
 | |
|       entropy->next_restart_num++;
 | |
|       entropy->next_restart_num &= 7;
 | |
|     }
 | |
|     entropy->restarts_to_go--;
 | |
|   }
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Encode a single block's worth of coefficients */
 | |
| 
 | |
| LOCAL(boolean)
 | |
| encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
 | |
|                   c_derived_tbl *dctbl, c_derived_tbl *actbl)
 | |
| {
 | |
|   register int temp, temp2;
 | |
|   register int nbits;
 | |
|   register int k, r, i;
 | |
|   int Se = state->cinfo->lim_Se;
 | |
|   const int * natural_order = state->cinfo->natural_order;
 | |
| 
 | |
|   /* Encode the DC coefficient difference per section F.1.2.1 */
 | |
| 
 | |
|   temp = temp2 = block[0] - last_dc_val;
 | |
| 
 | |
|   if (temp < 0) {
 | |
|     temp = -temp;		/* temp is abs value of input */
 | |
|     /* For a negative input, want temp2 = bitwise complement of abs(input) */
 | |
|     /* This code assumes we are on a two's complement machine */
 | |
|     temp2--;
 | |
|   }
 | |
| 
 | |
|   /* Find the number of bits needed for the magnitude of the coefficient */
 | |
|   nbits = 0;
 | |
|   while (temp) {
 | |
|     nbits++;
 | |
|     temp >>= 1;
 | |
|   }
 | |
|   /* Check for out-of-range coefficient values.
 | |
|    * Since we're encoding a difference, the range limit is twice as much.
 | |
|    */
 | |
|   if (nbits > MAX_COEF_BITS+1)
 | |
|     ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
 | |
| 
 | |
|   /* Emit the Huffman-coded symbol for the number of bits */
 | |
|   if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
 | |
|     return FALSE;
 | |
| 
 | |
|   /* Emit that number of bits of the value, if positive, */
 | |
|   /* or the complement of its magnitude, if negative. */
 | |
|   if (nbits)			/* emit_bits rejects calls with size 0 */
 | |
|     if (! emit_bits_s(state, (unsigned int) temp2, nbits))
 | |
|       return FALSE;
 | |
| 
 | |
|   /* Encode the AC coefficients per section F.1.2.2 */
 | |
| 
 | |
|   r = 0;			/* r = run length of zeros */
 | |
| 
 | |
|   for (k = 1; k <= Se; k++) {
 | |
|     if ((temp = block[natural_order[k]]) == 0) {
 | |
|       r++;
 | |
|     } else {
 | |
|       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
 | |
|       while (r > 15) {
 | |
|         if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
 | |
|           return FALSE;
 | |
|         r -= 16;
 | |
|       }
 | |
| 
 | |
|       temp2 = temp;
 | |
|       if (temp < 0) {
 | |
|         temp = -temp;		/* temp is abs value of input */
 | |
|         /* This code assumes we are on a two's complement machine */
 | |
|         temp2--;
 | |
|       }
 | |
| 
 | |
|       /* Find the number of bits needed for the magnitude of the coefficient */
 | |
|       nbits = 1;		/* there must be at least one 1 bit */
 | |
|       while ((temp >>= 1))
 | |
|         nbits++;
 | |
|       /* Check for out-of-range coefficient values */
 | |
|       if (nbits > MAX_COEF_BITS)
 | |
|         ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
 | |
| 
 | |
|       /* Emit Huffman symbol for run length / number of bits */
 | |
|       i = (r << 4) + nbits;
 | |
|       if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i]))
 | |
|         return FALSE;
 | |
| 
 | |
|       /* Emit that number of bits of the value, if positive, */
 | |
|       /* or the complement of its magnitude, if negative. */
 | |
|       if (! emit_bits_s(state, (unsigned int) temp2, nbits))
 | |
|         return FALSE;
 | |
| 
 | |
|       r = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If the last coef(s) were zero, emit an end-of-block code */
 | |
|   if (r > 0)
 | |
|     if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
 | |
|       return FALSE;
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Encode and output one MCU's worth of Huffman-compressed coefficients.
 | |
|  */
 | |
| 
 | |
| METHODDEF(boolean)
 | |
| encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 | |
| {
 | |
|   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | |
|   working_state state;
 | |
|   int blkn, ci;
 | |
|   jpeg_component_info * compptr;
 | |
| 
 | |
|   /* Load up working state */
 | |
|   state.next_output_byte = cinfo->dest->next_output_byte;
 | |
|   state.free_in_buffer = cinfo->dest->free_in_buffer;
 | |
|   ASSIGN_STATE(state.cur, entropy->saved);
 | |
|   state.cinfo = cinfo;
 | |
| 
 | |
|   /* Emit restart marker if needed */
 | |
|   if (cinfo->restart_interval) {
 | |
|     if (entropy->restarts_to_go == 0)
 | |
|       if (! emit_restart_s(&state, entropy->next_restart_num))
 | |
|         return FALSE;
 | |
|   }
 | |
| 
 | |
|   /* Encode the MCU data blocks */
 | |
|   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 | |
|     ci = cinfo->MCU_membership[blkn];
 | |
|     compptr = cinfo->cur_comp_info[ci];
 | |
|     if (! encode_one_block(&state,
 | |
|                            MCU_data[blkn][0], state.cur.last_dc_val[ci],
 | |
|                            entropy->dc_derived_tbls[compptr->dc_tbl_no],
 | |
|                            entropy->ac_derived_tbls[compptr->ac_tbl_no]))
 | |
|       return FALSE;
 | |
|     /* Update last_dc_val */
 | |
|     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
 | |
|   }
 | |
| 
 | |
|   /* Completed MCU, so update state */
 | |
|   cinfo->dest->next_output_byte = state.next_output_byte;
 | |
|   cinfo->dest->free_in_buffer = state.free_in_buffer;
 | |
|   ASSIGN_STATE(entropy->saved, state.cur);
 | |
| 
 | |
|   /* Update restart-interval state too */
 | |
|   if (cinfo->restart_interval) {
 | |
|     if (entropy->restarts_to_go == 0) {
 | |
|       entropy->restarts_to_go = cinfo->restart_interval;
 | |
|       entropy->next_restart_num++;
 | |
|       entropy->next_restart_num &= 7;
 | |
|     }
 | |
|     entropy->restarts_to_go--;
 | |
|   }
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Finish up at the end of a Huffman-compressed scan.
 | |
|  */
 | |
| 
 | |
| METHODDEF(void)
 | |
| finish_pass_huff (j_compress_ptr cinfo)
 | |
| {
 | |
|   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | |
|   working_state state;
 | |
| 
 | |
|   if (cinfo->progressive_mode) {
 | |
|     entropy->next_output_byte = cinfo->dest->next_output_byte;
 | |
|     entropy->free_in_buffer = cinfo->dest->free_in_buffer;
 | |
| 
 | |
|     /* Flush out any buffered data */
 | |
|     emit_eobrun(entropy);
 | |
|     flush_bits_e(entropy);
 | |
| 
 | |
|     cinfo->dest->next_output_byte = entropy->next_output_byte;
 | |
|     cinfo->dest->free_in_buffer = entropy->free_in_buffer;
 | |
|   } else {
 | |
|     /* Load up working state ... flush_bits needs it */
 | |
|     state.next_output_byte = cinfo->dest->next_output_byte;
 | |
|     state.free_in_buffer = cinfo->dest->free_in_buffer;
 | |
|     ASSIGN_STATE(state.cur, entropy->saved);
 | |
|     state.cinfo = cinfo;
 | |
| 
 | |
|     /* Flush out the last data */
 | |
|     if (! flush_bits_s(&state))
 | |
|       ERREXIT(cinfo, JERR_CANT_SUSPEND);
 | |
| 
 | |
|     /* Update state */
 | |
|     cinfo->dest->next_output_byte = state.next_output_byte;
 | |
|     cinfo->dest->free_in_buffer = state.free_in_buffer;
 | |
|     ASSIGN_STATE(entropy->saved, state.cur);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Huffman coding optimization.
 | |
|  *
 | |
|  * We first scan the supplied data and count the number of uses of each symbol
 | |
|  * that is to be Huffman-coded. (This process MUST agree with the code above.)
 | |
|  * Then we build a Huffman coding tree for the observed counts.
 | |
|  * Symbols which are not needed at all for the particular image are not
 | |
|  * assigned any code, which saves space in the DHT marker as well as in
 | |
|  * the compressed data.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* Process a single block's worth of coefficients */
 | |
| 
 | |
| LOCAL(void)
 | |
| htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
 | |
|                  long dc_counts[], long ac_counts[])
 | |
| {
 | |
|   register int temp;
 | |
|   register int nbits;
 | |
|   register int k, r;
 | |
|   int Se = cinfo->lim_Se;
 | |
|   const int * natural_order = cinfo->natural_order;
 | |
| 
 | |
|   /* Encode the DC coefficient difference per section F.1.2.1 */
 | |
| 
 | |
|   temp = block[0] - last_dc_val;
 | |
|   if (temp < 0)
 | |
|     temp = -temp;
 | |
| 
 | |
|   /* Find the number of bits needed for the magnitude of the coefficient */
 | |
|   nbits = 0;
 | |
|   while (temp) {
 | |
|     nbits++;
 | |
|     temp >>= 1;
 | |
|   }
 | |
|   /* Check for out-of-range coefficient values.
 | |
|    * Since we're encoding a difference, the range limit is twice as much.
 | |
|    */
 | |
|   if (nbits > MAX_COEF_BITS+1)
 | |
|     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
 | |
| 
 | |
|   /* Count the Huffman symbol for the number of bits */
 | |
|   dc_counts[nbits]++;
 | |
| 
 | |
|   /* Encode the AC coefficients per section F.1.2.2 */
 | |
| 
 | |
|   r = 0;			/* r = run length of zeros */
 | |
| 
 | |
|   for (k = 1; k <= Se; k++) {
 | |
|     if ((temp = block[natural_order[k]]) == 0) {
 | |
|       r++;
 | |
|     } else {
 | |
|       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
 | |
|       while (r > 15) {
 | |
|         ac_counts[0xF0]++;
 | |
|         r -= 16;
 | |
|       }
 | |
| 
 | |
|       /* Find the number of bits needed for the magnitude of the coefficient */
 | |
|       if (temp < 0)
 | |
|         temp = -temp;
 | |
| 
 | |
|       /* Find the number of bits needed for the magnitude of the coefficient */
 | |
|       nbits = 1;		/* there must be at least one 1 bit */
 | |
|       while ((temp >>= 1))
 | |
|         nbits++;
 | |
|       /* Check for out-of-range coefficient values */
 | |
|       if (nbits > MAX_COEF_BITS)
 | |
|         ERREXIT(cinfo, JERR_BAD_DCT_COEF);
 | |
| 
 | |
|       /* Count Huffman symbol for run length / number of bits */
 | |
|       ac_counts[(r << 4) + nbits]++;
 | |
| 
 | |
|       r = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If the last coef(s) were zero, emit an end-of-block code */
 | |
|   if (r > 0)
 | |
|     ac_counts[0]++;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
 | |
|  * No data is actually output, so no suspension return is possible.
 | |
|  */
 | |
| 
 | |
| METHODDEF(boolean)
 | |
| encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
 | |
| {
 | |
|   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | |
|   int blkn, ci;
 | |
|   jpeg_component_info * compptr;
 | |
| 
 | |
|   /* Take care of restart intervals if needed */
 | |
|   if (cinfo->restart_interval) {
 | |
|     if (entropy->restarts_to_go == 0) {
 | |
|       /* Re-initialize DC predictions to 0 */
 | |
|       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
 | |
|         entropy->saved.last_dc_val[ci] = 0;
 | |
|       /* Update restart state */
 | |
|       entropy->restarts_to_go = cinfo->restart_interval;
 | |
|     }
 | |
|     entropy->restarts_to_go--;
 | |
|   }
 | |
| 
 | |
|   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
 | |
|     ci = cinfo->MCU_membership[blkn];
 | |
|     compptr = cinfo->cur_comp_info[ci];
 | |
|     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
 | |
|                     entropy->dc_count_ptrs[compptr->dc_tbl_no],
 | |
|                     entropy->ac_count_ptrs[compptr->ac_tbl_no]);
 | |
|     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
 | |
|   }
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Generate the best Huffman code table for the given counts, fill htbl.
 | |
|  *
 | |
|  * The JPEG standard requires that no symbol be assigned a codeword of all
 | |
|  * one bits (so that padding bits added at the end of a compressed segment
 | |
|  * can't look like a valid code).  Because of the canonical ordering of
 | |
|  * codewords, this just means that there must be an unused slot in the
 | |
|  * longest codeword length category.  Section K.2 of the JPEG spec suggests
 | |
|  * reserving such a slot by pretending that symbol 256 is a valid symbol
 | |
|  * with count 1.  In theory that's not optimal; giving it count zero but
 | |
|  * including it in the symbol set anyway should give a better Huffman code.
 | |
|  * But the theoretically better code actually seems to come out worse in
 | |
|  * practice, because it produces more all-ones bytes (which incur stuffed
 | |
|  * zero bytes in the final file).  In any case the difference is tiny.
 | |
|  *
 | |
|  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
 | |
|  * If some symbols have a very small but nonzero probability, the Huffman tree
 | |
|  * must be adjusted to meet the code length restriction.  We currently use
 | |
|  * the adjustment method suggested in JPEG section K.2.  This method is *not*
 | |
|  * optimal; it may not choose the best possible limited-length code.  But
 | |
|  * typically only very-low-frequency symbols will be given less-than-optimal
 | |
|  * lengths, so the code is almost optimal.  Experimental comparisons against
 | |
|  * an optimal limited-length-code algorithm indicate that the difference is
 | |
|  * microscopic --- usually less than a hundredth of a percent of total size.
 | |
|  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
 | |
|  */
 | |
| 
 | |
| LOCAL(void)
 | |
| jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
 | |
| {
 | |
| #define MAX_CLEN 32		/* assumed maximum initial code length */
 | |
|   UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
 | |
|   int codesize[257];		/* codesize[k] = code length of symbol k */
 | |
|   int others[257];		/* next symbol in current branch of tree */
 | |
|   int c1, c2;
 | |
|   int p, i, j;
 | |
|   long v;
 | |
| 
 | |
|   /* This algorithm is explained in section K.2 of the JPEG standard */
 | |
| 
 | |
|   MEMZERO(bits, SIZEOF(bits));
 | |
|   MEMZERO(codesize, SIZEOF(codesize));
 | |
|   for (i = 0; i < 257; i++)
 | |
|     others[i] = -1;		/* init links to empty */
 | |
| 
 | |
|   freq[256] = 1;		/* make sure 256 has a nonzero count */
 | |
|   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
 | |
|    * that no real symbol is given code-value of all ones, because 256
 | |
|    * will be placed last in the largest codeword category.
 | |
|    */
 | |
| 
 | |
|   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
 | |
| 
 | |
|   for (;;) {
 | |
|     /* Find the smallest nonzero frequency, set c1 = its symbol */
 | |
|     /* In case of ties, take the larger symbol number */
 | |
|     c1 = -1;
 | |
|     v = 1000000000L;
 | |
|     for (i = 0; i <= 256; i++) {
 | |
|       if (freq[i] && freq[i] <= v) {
 | |
|         v = freq[i];
 | |
|         c1 = i;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Find the next smallest nonzero frequency, set c2 = its symbol */
 | |
|     /* In case of ties, take the larger symbol number */
 | |
|     c2 = -1;
 | |
|     v = 1000000000L;
 | |
|     for (i = 0; i <= 256; i++) {
 | |
|       if (freq[i] && freq[i] <= v && i != c1) {
 | |
|         v = freq[i];
 | |
|         c2 = i;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Done if we've merged everything into one frequency */
 | |
|     if (c2 < 0)
 | |
|       break;
 | |
| 
 | |
|     /* Else merge the two counts/trees */
 | |
|     freq[c1] += freq[c2];
 | |
|     freq[c2] = 0;
 | |
| 
 | |
|     /* Increment the codesize of everything in c1's tree branch */
 | |
|     codesize[c1]++;
 | |
|     while (others[c1] >= 0) {
 | |
|       c1 = others[c1];
 | |
|       codesize[c1]++;
 | |
|     }
 | |
| 
 | |
|     others[c1] = c2;		/* chain c2 onto c1's tree branch */
 | |
| 
 | |
|     /* Increment the codesize of everything in c2's tree branch */
 | |
|     codesize[c2]++;
 | |
|     while (others[c2] >= 0) {
 | |
|       c2 = others[c2];
 | |
|       codesize[c2]++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Now count the number of symbols of each code length */
 | |
|   for (i = 0; i <= 256; i++) {
 | |
|     if (codesize[i]) {
 | |
|       /* The JPEG standard seems to think that this can't happen, */
 | |
|       /* but I'm paranoid... */
 | |
|       if (codesize[i] > MAX_CLEN)
 | |
|         ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
 | |
| 
 | |
|       bits[codesize[i]]++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
 | |
|    * Huffman procedure assigned any such lengths, we must adjust the coding.
 | |
|    * Here is what the JPEG spec says about how this next bit works:
 | |
|    * Since symbols are paired for the longest Huffman code, the symbols are
 | |
|    * removed from this length category two at a time.  The prefix for the pair
 | |
|    * (which is one bit shorter) is allocated to one of the pair; then,
 | |
|    * skipping the BITS entry for that prefix length, a code word from the next
 | |
|    * shortest nonzero BITS entry is converted into a prefix for two code words
 | |
|    * one bit longer.
 | |
|    */
 | |
| 
 | |
|   for (i = MAX_CLEN; i > 16; i--) {
 | |
|     while (bits[i] > 0) {
 | |
|       j = i - 2;		/* find length of new prefix to be used */
 | |
|       while (bits[j] == 0)
 | |
|         j--;
 | |
| 
 | |
|       bits[i] -= 2;		/* remove two symbols */
 | |
|       bits[i-1]++;		/* one goes in this length */
 | |
|       bits[j+1] += 2;		/* two new symbols in this length */
 | |
|       bits[j]--;		/* symbol of this length is now a prefix */
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
 | |
|   while (bits[i] == 0)		/* find largest codelength still in use */
 | |
|     i--;
 | |
|   bits[i]--;
 | |
| 
 | |
|   /* Return final symbol counts (only for lengths 0..16) */
 | |
|   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
 | |
| 
 | |
|   /* Return a list of the symbols sorted by code length */
 | |
|   /* It's not real clear to me why we don't need to consider the codelength
 | |
|    * changes made above, but the JPEG spec seems to think this works.
 | |
|    */
 | |
|   p = 0;
 | |
|   for (i = 1; i <= MAX_CLEN; i++) {
 | |
|     for (j = 0; j <= 255; j++) {
 | |
|       if (codesize[j] == i) {
 | |
|         htbl->huffval[p] = (UINT8) j;
 | |
|         p++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Set sent_table FALSE so updated table will be written to JPEG file. */
 | |
|   htbl->sent_table = FALSE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Finish up a statistics-gathering pass and create the new Huffman tables.
 | |
|  */
 | |
| 
 | |
| METHODDEF(void)
 | |
| finish_pass_gather (j_compress_ptr cinfo)
 | |
| {
 | |
|   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | |
|   int ci, tbl;
 | |
|   jpeg_component_info * compptr;
 | |
|   JHUFF_TBL **htblptr;
 | |
|   boolean did_dc[NUM_HUFF_TBLS];
 | |
|   boolean did_ac[NUM_HUFF_TBLS];
 | |
| 
 | |
|   /* It's important not to apply jpeg_gen_optimal_table more than once
 | |
|    * per table, because it clobbers the input frequency counts!
 | |
|    */
 | |
|   if (cinfo->progressive_mode)
 | |
|     /* Flush out buffered data (all we care about is counting the EOB symbol) */
 | |
|     emit_eobrun(entropy);
 | |
| 
 | |
|   MEMZERO(did_dc, SIZEOF(did_dc));
 | |
|   MEMZERO(did_ac, SIZEOF(did_ac));
 | |
| 
 | |
|   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
 | |
|     compptr = cinfo->cur_comp_info[ci];
 | |
|     /* DC needs no table for refinement scan */
 | |
|     if (cinfo->Ss == 0 && cinfo->Ah == 0) {
 | |
|       tbl = compptr->dc_tbl_no;
 | |
|       if (! did_dc[tbl]) {
 | |
|         htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
 | |
|         if (*htblptr == NULL)
 | |
|           *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
 | |
|         jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]);
 | |
|         did_dc[tbl] = TRUE;
 | |
|       }
 | |
|     }
 | |
|     /* AC needs no table when not present */
 | |
|     if (cinfo->Se) {
 | |
|       tbl = compptr->ac_tbl_no;
 | |
|       if (! did_ac[tbl]) {
 | |
|         htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
 | |
|         if (*htblptr == NULL)
 | |
|           *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
 | |
|         jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]);
 | |
|         did_ac[tbl] = TRUE;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Initialize for a Huffman-compressed scan.
 | |
|  * If gather_statistics is TRUE, we do not output anything during the scan,
 | |
|  * just count the Huffman symbols used and generate Huffman code tables.
 | |
|  */
 | |
| 
 | |
| METHODDEF(void)
 | |
| start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
 | |
| {
 | |
|   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
 | |
|   int ci, tbl;
 | |
|   jpeg_component_info * compptr;
 | |
| 
 | |
|   if (gather_statistics)
 | |
|     entropy->pub.finish_pass = finish_pass_gather;
 | |
|   else
 | |
|     entropy->pub.finish_pass = finish_pass_huff;
 | |
| 
 | |
|   if (cinfo->progressive_mode) {
 | |
|     entropy->cinfo = cinfo;
 | |
|     entropy->gather_statistics = gather_statistics;
 | |
| 
 | |
|     /* We assume jcmaster.c already validated the scan parameters. */
 | |
| 
 | |
|     /* Select execution routine */
 | |
|     if (cinfo->Ah == 0) {
 | |
|       if (cinfo->Ss == 0)
 | |
|         entropy->pub.encode_mcu = encode_mcu_DC_first;
 | |
|       else
 | |
|         entropy->pub.encode_mcu = encode_mcu_AC_first;
 | |
|     } else {
 | |
|       if (cinfo->Ss == 0)
 | |
|         entropy->pub.encode_mcu = encode_mcu_DC_refine;
 | |
|       else {
 | |
|         entropy->pub.encode_mcu = encode_mcu_AC_refine;
 | |
|         /* AC refinement needs a correction bit buffer */
 | |
|         if (entropy->bit_buffer == NULL)
 | |
|           entropy->bit_buffer = (char *)
 | |
|             (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | |
|                                         MAX_CORR_BITS * SIZEOF(char));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Initialize AC stuff */
 | |
|     entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no;
 | |
|     entropy->EOBRUN = 0;
 | |
|     entropy->BE = 0;
 | |
|   } else {
 | |
|     if (gather_statistics)
 | |
|       entropy->pub.encode_mcu = encode_mcu_gather;
 | |
|     else
 | |
|       entropy->pub.encode_mcu = encode_mcu_huff;
 | |
|   }
 | |
| 
 | |
|   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
 | |
|     compptr = cinfo->cur_comp_info[ci];
 | |
|     /* DC needs no table for refinement scan */
 | |
|     if (cinfo->Ss == 0 && cinfo->Ah == 0) {
 | |
|       tbl = compptr->dc_tbl_no;
 | |
|       if (gather_statistics) {
 | |
|         /* Check for invalid table index */
 | |
|         /* (make_c_derived_tbl does this in the other path) */
 | |
|         if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
 | |
|           ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
 | |
|         /* Allocate and zero the statistics tables */
 | |
|         /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
 | |
|         if (entropy->dc_count_ptrs[tbl] == NULL)
 | |
|           entropy->dc_count_ptrs[tbl] = (long *)
 | |
|             (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | |
|                                         257 * SIZEOF(long));
 | |
|         MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long));
 | |
|       } else {
 | |
|         /* Compute derived values for Huffman tables */
 | |
|         /* We may do this more than once for a table, but it's not expensive */
 | |
|         jpeg_make_c_derived_tbl(cinfo, TRUE, tbl,
 | |
|                                 & entropy->dc_derived_tbls[tbl]);
 | |
|       }
 | |
|       /* Initialize DC predictions to 0 */
 | |
|       entropy->saved.last_dc_val[ci] = 0;
 | |
|     }
 | |
|     /* AC needs no table when not present */
 | |
|     if (cinfo->Se) {
 | |
|       tbl = compptr->ac_tbl_no;
 | |
|       if (gather_statistics) {
 | |
|         if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
 | |
|           ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
 | |
|         if (entropy->ac_count_ptrs[tbl] == NULL)
 | |
|           entropy->ac_count_ptrs[tbl] = (long *)
 | |
|             (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | |
|                                         257 * SIZEOF(long));
 | |
|         MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long));
 | |
|       } else {
 | |
|         jpeg_make_c_derived_tbl(cinfo, FALSE, tbl,
 | |
|                                 & entropy->ac_derived_tbls[tbl]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Initialize bit buffer to empty */
 | |
|   entropy->saved.put_buffer = 0;
 | |
|   entropy->saved.put_bits = 0;
 | |
| 
 | |
|   /* Initialize restart stuff */
 | |
|   entropy->restarts_to_go = cinfo->restart_interval;
 | |
|   entropy->next_restart_num = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Module initialization routine for Huffman entropy encoding.
 | |
|  */
 | |
| 
 | |
| GLOBAL(void)
 | |
| jinit_huff_encoder (j_compress_ptr cinfo)
 | |
| {
 | |
|   huff_entropy_ptr entropy;
 | |
|   int i;
 | |
| 
 | |
|   entropy = (huff_entropy_ptr)
 | |
|     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 | |
|                                 SIZEOF(huff_entropy_encoder));
 | |
|   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
 | |
|   entropy->pub.start_pass = start_pass_huff;
 | |
| 
 | |
|   /* Mark tables unallocated */
 | |
|   for (i = 0; i < NUM_HUFF_TBLS; i++) {
 | |
|     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
 | |
|     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
 | |
|   }
 | |
| 
 | |
|   if (cinfo->progressive_mode)
 | |
|     entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */
 | |
| }
 | 
