358 lines
12 KiB
C++
358 lines
12 KiB
C++
#include <algorithm>
|
|
#include <functional>
|
|
#include <opencv2/calib3d/calib3d.hpp>
|
|
#include <opencv2/gpu/gpu.hpp>
|
|
#include "matchers.hpp"
|
|
#include "util.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace
|
|
{
|
|
class CpuSurfFeaturesFinder : public FeaturesFinder
|
|
{
|
|
public:
|
|
inline CpuSurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers,
|
|
int num_octaves_descr, int num_layers_descr)
|
|
{
|
|
detector_ = new /*FastFeatureDetector;*/SurfFeatureDetector(hess_thresh, num_octaves, num_layers);
|
|
extractor_ = new SurfDescriptorExtractor(num_octaves_descr, num_layers_descr);
|
|
}
|
|
|
|
protected:
|
|
void find(const vector<Mat> &images, vector<ImageFeatures> &features);
|
|
|
|
private:
|
|
Ptr<FeatureDetector> detector_;
|
|
Ptr<DescriptorExtractor> extractor_;
|
|
};
|
|
|
|
void CpuSurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features)
|
|
{
|
|
// Make images gray
|
|
vector<Mat> gray_images(images.size());
|
|
for (size_t i = 0; i < images.size(); ++i)
|
|
{
|
|
CV_Assert(images[i].depth() == CV_8U);
|
|
cvtColor(images[i], gray_images[i], CV_BGR2GRAY);
|
|
}
|
|
|
|
features.resize(images.size());
|
|
|
|
// Find keypoints in all images
|
|
for (size_t i = 0; i < images.size(); ++i)
|
|
{
|
|
detector_->detect(gray_images[i], features[i].keypoints);
|
|
extractor_->compute(gray_images[i], features[i].keypoints, features[i].descriptors);
|
|
}
|
|
}
|
|
|
|
class GpuSurfFeaturesFinder : public FeaturesFinder
|
|
{
|
|
public:
|
|
inline GpuSurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers,
|
|
int num_octaves_descr, int num_layers_descr)
|
|
{
|
|
surf_.hessianThreshold = hess_thresh;
|
|
surf_.extended = false;
|
|
num_octaves_ = num_octaves;
|
|
num_layers_ = num_layers;
|
|
num_octaves_descr_ = num_octaves_descr;
|
|
num_layers_descr_ = num_layers_descr;
|
|
}
|
|
|
|
protected:
|
|
void find(const vector<Mat> &images, vector<ImageFeatures> &features);
|
|
|
|
private:
|
|
SURF_GPU surf_;
|
|
int num_octaves_, num_layers_;
|
|
int num_octaves_descr_, num_layers_descr_;
|
|
};
|
|
|
|
void GpuSurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features)
|
|
{
|
|
// Make images gray
|
|
vector<GpuMat> gray_images(images.size());
|
|
for (size_t i = 0; i < images.size(); ++i)
|
|
{
|
|
CV_Assert(images[i].depth() == CV_8U);
|
|
cvtColor(GpuMat(images[i]), gray_images[i], CV_BGR2GRAY);
|
|
}
|
|
|
|
features.resize(images.size());
|
|
|
|
// Find keypoints in all images
|
|
GpuMat d_keypoints;
|
|
GpuMat d_descriptors;
|
|
for (size_t i = 0; i < images.size(); ++i)
|
|
{
|
|
surf_.nOctaves = num_octaves_;
|
|
surf_.nOctaveLayers = num_layers_;
|
|
surf_(gray_images[i], GpuMat(), d_keypoints);
|
|
|
|
surf_.nOctaves = num_octaves_descr_;
|
|
surf_.nOctaveLayers = num_layers_descr_;
|
|
surf_(gray_images[i], GpuMat(), d_keypoints, d_descriptors, true);
|
|
|
|
surf_.downloadKeypoints(d_keypoints, features[i].keypoints);
|
|
d_descriptors.download(features[i].descriptors);
|
|
}
|
|
}
|
|
}
|
|
|
|
SurfFeaturesFinder::SurfFeaturesFinder(bool try_use_gpu, double hess_thresh, int num_octaves, int num_layers,
|
|
int num_octaves_descr, int num_layers_descr)
|
|
{
|
|
if (try_use_gpu && getCudaEnabledDeviceCount() > 0)
|
|
impl_ = new GpuSurfFeaturesFinder(hess_thresh, num_octaves, num_layers, num_octaves_descr, num_layers_descr);
|
|
else
|
|
impl_ = new CpuSurfFeaturesFinder(hess_thresh, num_octaves, num_layers, num_octaves_descr, num_layers_descr);
|
|
}
|
|
|
|
|
|
void SurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &features)
|
|
{
|
|
(*impl_)(images, features);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0), confidence(0) {}
|
|
|
|
MatchesInfo::MatchesInfo(const MatchesInfo &other) { *this = other; }
|
|
|
|
const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other)
|
|
{
|
|
src_img_idx = other.src_img_idx;
|
|
dst_img_idx = other.dst_img_idx;
|
|
matches = other.matches;
|
|
inliers_mask = other.inliers_mask;
|
|
num_inliers = other.num_inliers;
|
|
H = other.H.clone();
|
|
confidence = other.confidence;
|
|
return *this;
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
void FeaturesMatcher::operator ()(const vector<Mat> &images, const vector<ImageFeatures> &features,
|
|
vector<MatchesInfo> &pairwise_matches)
|
|
{
|
|
pairwise_matches.resize(images.size() * images.size());
|
|
for (size_t i = 0; i < images.size(); ++i)
|
|
{
|
|
LOGLN("Processing image " << i << "... ");
|
|
for (size_t j = 0; j < images.size(); ++j)
|
|
{
|
|
if (i == j)
|
|
continue;
|
|
size_t pair_idx = i * images.size() + j;
|
|
(*this)(images[i], features[i], images[j], features[j], pairwise_matches[pair_idx]);
|
|
pairwise_matches[pair_idx].src_img_idx = i;
|
|
pairwise_matches[pair_idx].dst_img_idx = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace
|
|
{
|
|
class CpuMatcher : public FeaturesMatcher
|
|
{
|
|
public:
|
|
inline CpuMatcher(float match_conf) : match_conf_(match_conf) {}
|
|
|
|
void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info);
|
|
|
|
private:
|
|
float match_conf_;
|
|
};
|
|
|
|
void CpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info)
|
|
{
|
|
matches_info.matches.clear();
|
|
|
|
BruteForceMatcher< L2<float> > matcher;
|
|
vector< vector<DMatch> > pair_matches;
|
|
|
|
// Find 1->2 matches
|
|
matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2);
|
|
for (size_t i = 0; i < pair_matches.size(); ++i)
|
|
{
|
|
if (pair_matches[i].size() < 2)
|
|
continue;
|
|
const DMatch& m0 = pair_matches[i][0];
|
|
const DMatch& m1 = pair_matches[i][1];
|
|
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
|
matches_info.matches.push_back(m0);
|
|
}
|
|
|
|
// Find 2->1 matches
|
|
pair_matches.clear();
|
|
matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2);
|
|
for (size_t i = 0; i < pair_matches.size(); ++i)
|
|
{
|
|
if (pair_matches[i].size() < 2)
|
|
continue;
|
|
const DMatch& m0 = pair_matches[i][0];
|
|
const DMatch& m1 = pair_matches[i][1];
|
|
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
|
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
|
|
}
|
|
}
|
|
|
|
class GpuMatcher : public FeaturesMatcher
|
|
{
|
|
public:
|
|
inline GpuMatcher(float match_conf) : match_conf_(match_conf) {}
|
|
|
|
void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info);
|
|
|
|
private:
|
|
float match_conf_;
|
|
|
|
GpuMat descriptors1_;
|
|
GpuMat descriptors2_;
|
|
|
|
GpuMat trainIdx_, distance_, allDist_;
|
|
};
|
|
|
|
void GpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info)
|
|
{
|
|
matches_info.matches.clear();
|
|
|
|
BruteForceMatcher_GPU< L2<float> > matcher;
|
|
|
|
descriptors1_.upload(features1.descriptors);
|
|
descriptors2_.upload(features2.descriptors);
|
|
|
|
vector< vector<DMatch> > pair_matches;
|
|
|
|
// Find 1->2 matches
|
|
matcher.knnMatch(descriptors1_, descriptors2_, trainIdx_, distance_, allDist_, 2);
|
|
matcher.knnMatchDownload(trainIdx_, distance_, pair_matches);
|
|
for (size_t i = 0; i < pair_matches.size(); ++i)
|
|
{
|
|
if (pair_matches[i].size() < 2)
|
|
continue;
|
|
const DMatch& m0 = pair_matches[i][0];
|
|
const DMatch& m1 = pair_matches[i][1];
|
|
|
|
CV_Assert(m0.queryIdx < static_cast<int>(features1.keypoints.size()));
|
|
CV_Assert(m0.trainIdx < static_cast<int>(features2.keypoints.size()));
|
|
|
|
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
|
matches_info.matches.push_back(m0);
|
|
}
|
|
|
|
// Find 2->1 matches
|
|
pair_matches.clear();
|
|
matcher.knnMatch(descriptors2_, descriptors1_, trainIdx_, distance_, allDist_, 2);
|
|
matcher.knnMatchDownload(trainIdx_, distance_, pair_matches);
|
|
for (size_t i = 0; i < pair_matches.size(); ++i)
|
|
{
|
|
if (pair_matches[i].size() < 2)
|
|
continue;
|
|
const DMatch& m0 = pair_matches[i][0];
|
|
const DMatch& m1 = pair_matches[i][1];
|
|
|
|
CV_Assert(m0.trainIdx < static_cast<int>(features1.keypoints.size()));
|
|
CV_Assert(m0.queryIdx < static_cast<int>(features2.keypoints.size()));
|
|
|
|
if (m0.distance < (1.f - match_conf_) * m1.distance)
|
|
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
|
|
}
|
|
}
|
|
}
|
|
|
|
BestOf2NearestMatcher::BestOf2NearestMatcher(bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2)
|
|
{
|
|
if (try_use_gpu && getCudaEnabledDeviceCount() > 0)
|
|
impl_ = new GpuMatcher(match_conf);
|
|
else
|
|
impl_ = new CpuMatcher(match_conf);
|
|
|
|
num_matches_thresh1_ = num_matches_thresh1;
|
|
num_matches_thresh2_ = num_matches_thresh2;
|
|
}
|
|
|
|
|
|
void BestOf2NearestMatcher::match(const Mat &img1, const ImageFeatures &features1, const Mat &img2, const ImageFeatures &features2,
|
|
MatchesInfo &matches_info)
|
|
{
|
|
(*impl_)(img1, features1, img2, features2, matches_info);
|
|
|
|
// Check if it makes sense to find homography
|
|
if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_))
|
|
return;
|
|
|
|
// Construct point-point correspondences for homography estimation
|
|
Mat src_points(1, matches_info.matches.size(), CV_32FC2);
|
|
Mat dst_points(1, matches_info.matches.size(), CV_32FC2);
|
|
for (size_t i = 0; i < matches_info.matches.size(); ++i)
|
|
{
|
|
const DMatch& m = matches_info.matches[i];
|
|
|
|
Point2f p = features1.keypoints[m.queryIdx].pt;
|
|
p.x -= img1.cols * 0.5f;
|
|
p.y -= img1.rows * 0.5f;
|
|
src_points.at<Point2f>(0, i) = p;
|
|
|
|
p = features2.keypoints[m.trainIdx].pt;
|
|
p.x -= img2.cols * 0.5f;
|
|
p.y -= img2.rows * 0.5f;
|
|
dst_points.at<Point2f>(0, i) = p;
|
|
}
|
|
|
|
// Find pair-wise motion
|
|
matches_info.H = findHomography(src_points, dst_points, matches_info.inliers_mask, CV_RANSAC);
|
|
|
|
// Find number of inliers
|
|
matches_info.num_inliers = 0;
|
|
for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i)
|
|
if (matches_info.inliers_mask[i])
|
|
matches_info.num_inliers++;
|
|
|
|
matches_info.confidence = matches_info.num_inliers / (8 + 0.3*matches_info.matches.size());
|
|
|
|
// Check if we should try to refine motion
|
|
if (matches_info.num_inliers < num_matches_thresh2_)
|
|
return;
|
|
|
|
// Construct point-point correspondences for inliers only
|
|
src_points.create(1, matches_info.num_inliers, CV_32FC2);
|
|
dst_points.create(1, matches_info.num_inliers, CV_32FC2);
|
|
int inlier_idx = 0;
|
|
for (size_t i = 0; i < matches_info.matches.size(); ++i)
|
|
{
|
|
if (!matches_info.inliers_mask[i])
|
|
continue;
|
|
|
|
const DMatch& m = matches_info.matches[i];
|
|
|
|
Point2f p = features1.keypoints[m.queryIdx].pt;
|
|
p.x -= img1.cols * 0.5f;
|
|
p.y -= img2.rows * 0.5f;
|
|
src_points.at<Point2f>(0, inlier_idx) = p;
|
|
|
|
p = features2.keypoints[m.trainIdx].pt;
|
|
p.x -= img2.cols * 0.5f;
|
|
p.y -= img2.rows * 0.5f;
|
|
dst_points.at<Point2f>(0, inlier_idx) = p;
|
|
|
|
inlier_idx++;
|
|
}
|
|
|
|
// Rerun motion estimation on inliers only
|
|
matches_info.H = findHomography(src_points, dst_points, CV_RANSAC);
|
|
}
|