opencv/modules/gpu/src/video_reader.cpp
2013-03-22 14:03:15 +04:00

402 lines
12 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#if !defined(HAVE_CUDA) || defined(CUDA_DISABLER) || !defined(HAVE_NVCUVID)
class cv::gpu::VideoReader_GPU::Impl
{
};
cv::gpu::VideoReader_GPU::VideoReader_GPU() { throw_nogpu(); }
cv::gpu::VideoReader_GPU::VideoReader_GPU(const std::string&) { throw_nogpu(); }
cv::gpu::VideoReader_GPU::VideoReader_GPU(const cv::Ptr<VideoSource>&) { throw_nogpu(); }
cv::gpu::VideoReader_GPU::~VideoReader_GPU() { }
void cv::gpu::VideoReader_GPU::open(const std::string&) { throw_nogpu(); }
void cv::gpu::VideoReader_GPU::open(const cv::Ptr<VideoSource>&) { throw_nogpu(); }
bool cv::gpu::VideoReader_GPU::isOpened() const { return false; }
void cv::gpu::VideoReader_GPU::close() { }
bool cv::gpu::VideoReader_GPU::read(GpuMat&) { throw_nogpu(); return false; }
cv::gpu::VideoReader_GPU::FormatInfo cv::gpu::VideoReader_GPU::format() const { throw_nogpu(); FormatInfo format_ = {MPEG1,Monochrome,0,0}; return format_; }
bool cv::gpu::VideoReader_GPU::VideoSource::parseVideoData(const unsigned char*, size_t, bool) { throw_nogpu(); return false; }
void cv::gpu::VideoReader_GPU::dumpFormat(std::ostream&) { throw_nogpu(); }
#else // HAVE_CUDA
#include "frame_queue.h"
#include "video_decoder.h"
#include "video_parser.h"
#include "cuvid_video_source.h"
#include "ffmpeg_video_source.h"
#include "cu_safe_call.h"
class cv::gpu::VideoReader_GPU::Impl
{
public:
explicit Impl(const cv::Ptr<cv::gpu::VideoReader_GPU::VideoSource>& source);
~Impl();
bool grab(cv::gpu::GpuMat& frame);
cv::gpu::VideoReader_GPU::FormatInfo format() const { return videoSource_->format(); }
private:
Impl(const Impl&);
Impl& operator =(const Impl&);
cv::Ptr<cv::gpu::VideoReader_GPU::VideoSource> videoSource_;
std::auto_ptr<cv::gpu::detail::FrameQueue> frameQueue_;
std::auto_ptr<cv::gpu::detail::VideoDecoder> videoDecoder_;
std::auto_ptr<cv::gpu::detail::VideoParser> videoParser_;
CUvideoctxlock lock_;
std::deque< std::pair<CUVIDPARSERDISPINFO, CUVIDPROCPARAMS> > frames_;
};
cv::gpu::VideoReader_GPU::Impl::Impl(const cv::Ptr<VideoSource>& source) :
videoSource_(source),
lock_(0)
{
// init context
GpuMat temp(1, 1, CV_8UC1);
temp.release();
DeviceInfo devInfo;
CV_Assert( devInfo.supports(FEATURE_SET_COMPUTE_11) );
CUcontext ctx;
cuSafeCall( cuCtxGetCurrent(&ctx) );
cuSafeCall( cuvidCtxLockCreate(&lock_, ctx) );
frameQueue_.reset(new detail::FrameQueue);
videoDecoder_.reset(new detail::VideoDecoder(videoSource_->format(), lock_));
videoParser_.reset(new detail::VideoParser(videoDecoder_.get(), frameQueue_.get()));
videoSource_->setFrameQueue(frameQueue_.get());
videoSource_->setVideoParser(videoParser_.get());
videoSource_->start();
}
cv::gpu::VideoReader_GPU::Impl::~Impl()
{
frameQueue_->endDecode();
videoSource_->stop();
}
namespace cv { namespace gpu { namespace device {
namespace video_decoding
{
void loadHueCSC(float hueCSC[9]);
void NV12ToARGB_gpu(const PtrStepb decodedFrame, PtrStepSz<unsigned int> interopFrame, cudaStream_t stream = 0);
}
}}}
namespace
{
class VideoCtxAutoLock
{
public:
VideoCtxAutoLock(CUvideoctxlock lock) : m_lock(lock) { cuSafeCall( cuvidCtxLock(m_lock, 0) ); }
~VideoCtxAutoLock() { cuvidCtxUnlock(m_lock, 0); }
private:
CUvideoctxlock m_lock;
};
enum ColorSpace
{
ITU601 = 1,
ITU709 = 2
};
void setColorSpaceMatrix(ColorSpace CSC, float hueCSC[9], float hue)
{
float hueSin = std::sin(hue);
float hueCos = std::cos(hue);
if (CSC == ITU601)
{
//CCIR 601
hueCSC[0] = 1.1644f;
hueCSC[1] = hueSin * 1.5960f;
hueCSC[2] = hueCos * 1.5960f;
hueCSC[3] = 1.1644f;
hueCSC[4] = (hueCos * -0.3918f) - (hueSin * 0.8130f);
hueCSC[5] = (hueSin * 0.3918f) - (hueCos * 0.8130f);
hueCSC[6] = 1.1644f;
hueCSC[7] = hueCos * 2.0172f;
hueCSC[8] = hueSin * -2.0172f;
}
else if (CSC == ITU709)
{
//CCIR 709
hueCSC[0] = 1.0f;
hueCSC[1] = hueSin * 1.57480f;
hueCSC[2] = hueCos * 1.57480f;
hueCSC[3] = 1.0;
hueCSC[4] = (hueCos * -0.18732f) - (hueSin * 0.46812f);
hueCSC[5] = (hueSin * 0.18732f) - (hueCos * 0.46812f);
hueCSC[6] = 1.0f;
hueCSC[7] = hueCos * 1.85560f;
hueCSC[8] = hueSin * -1.85560f;
}
}
void cudaPostProcessFrame(const cv::gpu::GpuMat& decodedFrame, cv::gpu::GpuMat& interopFrame, int width, int height)
{
using namespace cv::gpu::device::video_decoding;
static bool updateCSC = true;
static float hueColorSpaceMat[9];
// Upload the Color Space Conversion Matrices
if (updateCSC)
{
const ColorSpace colorSpace = ITU601;
const float hue = 0.0f;
// CCIR 601/709
setColorSpaceMatrix(colorSpace, hueColorSpaceMat, hue);
updateCSC = false;
}
// Final Stage: NV12toARGB color space conversion
interopFrame.create(height, width, CV_8UC4);
loadHueCSC(hueColorSpaceMat);
NV12ToARGB_gpu(decodedFrame, interopFrame);
}
}
bool cv::gpu::VideoReader_GPU::Impl::grab(GpuMat& frame)
{
if (videoSource_->hasError() || videoParser_->hasError())
CV_Error(CV_StsUnsupportedFormat, "Unsupported video source");
if (!videoSource_->isStarted() || frameQueue_->isEndOfDecode())
return false;
if (frames_.empty())
{
CUVIDPARSERDISPINFO displayInfo;
for (;;)
{
if (frameQueue_->dequeue(displayInfo))
break;
if (videoSource_->hasError() || videoParser_->hasError())
CV_Error(CV_StsUnsupportedFormat, "Unsupported video source");
if (frameQueue_->isEndOfDecode())
return false;
// Wait a bit
detail::Thread::sleep(1);
}
bool isProgressive = displayInfo.progressive_frame != 0;
const int num_fields = isProgressive ? 1 : 2 + displayInfo.repeat_first_field;
for (int active_field = 0; active_field < num_fields; ++active_field)
{
CUVIDPROCPARAMS videoProcParams;
std::memset(&videoProcParams, 0, sizeof(CUVIDPROCPARAMS));
videoProcParams.progressive_frame = displayInfo.progressive_frame;
videoProcParams.second_field = active_field;
videoProcParams.top_field_first = displayInfo.top_field_first;
videoProcParams.unpaired_field = (num_fields == 1);
frames_.push_back(std::make_pair(displayInfo, videoProcParams));
}
}
if (frames_.empty())
return false;
std::pair<CUVIDPARSERDISPINFO, CUVIDPROCPARAMS> frameInfo = frames_.front();
frames_.pop_front();
{
VideoCtxAutoLock autoLock(lock_);
// map decoded video frame to CUDA surface
cv::gpu::GpuMat decodedFrame = videoDecoder_->mapFrame(frameInfo.first.picture_index, frameInfo.second);
// perform post processing on the CUDA surface (performs colors space conversion and post processing)
// comment this out if we inclue the line of code seen above
cudaPostProcessFrame(decodedFrame, frame, videoDecoder_->targetWidth(), videoDecoder_->targetHeight());
// unmap video frame
// unmapFrame() synchronizes with the VideoDecode API (ensures the frame has finished decoding)
videoDecoder_->unmapFrame(decodedFrame);
}
// release the frame, so it can be re-used in decoder
if (frames_.empty())
frameQueue_->releaseFrame(frameInfo.first);
return true;
}
////////////////////////////////////////////////////////////////////////////
cv::gpu::VideoReader_GPU::VideoReader_GPU()
{
}
cv::gpu::VideoReader_GPU::VideoReader_GPU(const std::string& filename)
{
open(filename);
}
cv::gpu::VideoReader_GPU::VideoReader_GPU(const cv::Ptr<VideoSource>& source)
{
open(source);
}
cv::gpu::VideoReader_GPU::~VideoReader_GPU()
{
close();
}
void cv::gpu::VideoReader_GPU::open(const std::string& filename)
{
CV_Assert( !filename.empty() );
#ifndef __APPLE__
try
{
cv::Ptr<VideoSource> source(new detail::CuvidVideoSource(filename));
open(source);
}
catch (const std::runtime_error&)
#endif
{
cv::Ptr<VideoSource> source(new cv::gpu::detail::FFmpegVideoSource(filename));
open(source);
}
}
void cv::gpu::VideoReader_GPU::open(const cv::Ptr<VideoSource>& source)
{
CV_Assert( !source.empty() );
close();
impl_.reset(new Impl(source));
}
bool cv::gpu::VideoReader_GPU::isOpened() const
{
return impl_.get() != 0;
}
void cv::gpu::VideoReader_GPU::close()
{
impl_.reset();
}
bool cv::gpu::VideoReader_GPU::read(GpuMat& image)
{
if (!isOpened())
return false;
if (!impl_->grab(image))
{
close();
return false;
}
return true;
}
cv::gpu::VideoReader_GPU::FormatInfo cv::gpu::VideoReader_GPU::format() const
{
CV_Assert( isOpened() );
return impl_->format();
}
bool cv::gpu::VideoReader_GPU::VideoSource::parseVideoData(const unsigned char* data, size_t size, bool endOfStream)
{
return videoParser_->parseVideoData(data, size, endOfStream);
}
void cv::gpu::VideoReader_GPU::dumpFormat(std::ostream& st)
{
static const char* codecs[] =
{
"MPEG1",
"MPEG2",
"MPEG4",
"VC1",
"H264",
"JPEG",
"H264_SVC",
"H264_MVC"
};
static const char* chromas[] =
{
"Monochrome",
"YUV420",
"YUV422",
"YUV444"
};
FormatInfo _format = this->format();
st << "Frame Size : " << _format.width << "x" << _format.height << std::endl;
st << "Codec : " << (_format.codec <= H264_MVC ? codecs[_format.codec] : "Uncompressed YUV") << std::endl;
st << "Chroma Format : " << chromas[_format.chromaFormat] << std::endl;
}
#endif // HAVE_CUDA