opencv/modules/imgproc/src/phasecorr.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

612 lines
20 KiB
C++

/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2008-2011, William Lucas
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Willow Garage nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
#include "precomp.hpp"
#include <vector>
namespace cv
{
static void magSpectrums( InputArray _src, OutputArray _dst)
{
Mat src = _src.getMat();
int depth = src.depth(), cn = src.channels(), type = src.type();
int rows = src.rows, cols = src.cols;
int j, k;
CV_Assert( type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 );
if(src.depth() == CV_32F)
_dst.create( src.rows, src.cols, CV_32FC1 );
else
_dst.create( src.rows, src.cols, CV_64FC1 );
Mat dst = _dst.getMat();
dst.setTo(0);//Mat elements are not equal to zero by default!
bool is_1d = (rows == 1 || (cols == 1 && src.isContinuous() && dst.isContinuous()));
if( is_1d )
cols = cols + rows - 1, rows = 1;
int ncols = cols*cn;
int j0 = cn == 1;
int j1 = ncols - (cols % 2 == 0 && cn == 1);
if( depth == CV_32F )
{
const float* dataSrc = (const float*)src.data;
float* dataDst = (float*)dst.data;
size_t stepSrc = src.step/sizeof(dataSrc[0]);
size_t stepDst = dst.step/sizeof(dataDst[0]);
if( !is_1d && cn == 1 )
{
for( k = 0; k < (cols % 2 ? 1 : 2); k++ )
{
if( k == 1 )
dataSrc += cols - 1, dataDst += cols - 1;
dataDst[0] = dataSrc[0]*dataSrc[0];
if( rows % 2 == 0 )
dataDst[(rows-1)*stepDst] = dataSrc[(rows-1)*stepSrc]*dataSrc[(rows-1)*stepSrc];
for( j = 1; j <= rows - 2; j += 2 )
{
dataDst[j*stepDst] = (float)std::sqrt((double)dataSrc[j*stepSrc]*dataSrc[j*stepSrc] +
(double)dataSrc[(j+1)*stepSrc]*dataSrc[(j+1)*stepSrc]);
}
if( k == 1 )
dataSrc -= cols - 1, dataDst -= cols - 1;
}
}
for( ; rows--; dataSrc += stepSrc, dataDst += stepDst )
{
if( is_1d && cn == 1 )
{
dataDst[0] = dataSrc[0]*dataSrc[0];
if( cols % 2 == 0 )
dataDst[j1] = dataSrc[j1]*dataSrc[j1];
}
for( j = j0; j < j1; j += 2 )
{
dataDst[j] = (float)std::sqrt((double)dataSrc[j]*dataSrc[j] + (double)dataSrc[j+1]*dataSrc[j+1]);
}
}
}
else
{
const double* dataSrc = (const double*)src.data;
double* dataDst = (double*)dst.data;
size_t stepSrc = src.step/sizeof(dataSrc[0]);
size_t stepDst = dst.step/sizeof(dataDst[0]);
if( !is_1d && cn == 1 )
{
for( k = 0; k < (cols % 2 ? 1 : 2); k++ )
{
if( k == 1 )
dataSrc += cols - 1, dataDst += cols - 1;
dataDst[0] = dataSrc[0]*dataSrc[0];
if( rows % 2 == 0 )
dataDst[(rows-1)*stepDst] = dataSrc[(rows-1)*stepSrc]*dataSrc[(rows-1)*stepSrc];
for( j = 1; j <= rows - 2; j += 2 )
{
dataDst[j*stepDst] = std::sqrt(dataSrc[j*stepSrc]*dataSrc[j*stepSrc] +
dataSrc[(j+1)*stepSrc]*dataSrc[(j+1)*stepSrc]);
}
if( k == 1 )
dataSrc -= cols - 1, dataDst -= cols - 1;
}
}
for( ; rows--; dataSrc += stepSrc, dataDst += stepDst )
{
if( is_1d && cn == 1 )
{
dataDst[0] = dataSrc[0]*dataSrc[0];
if( cols % 2 == 0 )
dataDst[j1] = dataSrc[j1]*dataSrc[j1];
}
for( j = j0; j < j1; j += 2 )
{
dataDst[j] = std::sqrt(dataSrc[j]*dataSrc[j] + dataSrc[j+1]*dataSrc[j+1]);
}
}
}
}
static void divSpectrums( InputArray _srcA, InputArray _srcB, OutputArray _dst, int flags, bool conjB)
{
Mat srcA = _srcA.getMat(), srcB = _srcB.getMat();
int depth = srcA.depth(), cn = srcA.channels(), type = srcA.type();
int rows = srcA.rows, cols = srcA.cols;
int j, k;
CV_Assert( type == srcB.type() && srcA.size() == srcB.size() );
CV_Assert( type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 );
_dst.create( srcA.rows, srcA.cols, type );
Mat dst = _dst.getMat();
bool is_1d = (flags & DFT_ROWS) || (rows == 1 || (cols == 1 &&
srcA.isContinuous() && srcB.isContinuous() && dst.isContinuous()));
if( is_1d && !(flags & DFT_ROWS) )
cols = cols + rows - 1, rows = 1;
int ncols = cols*cn;
int j0 = cn == 1;
int j1 = ncols - (cols % 2 == 0 && cn == 1);
if( depth == CV_32F )
{
const float* dataA = (const float*)srcA.data;
const float* dataB = (const float*)srcB.data;
float* dataC = (float*)dst.data;
float eps = FLT_EPSILON; // prevent div0 problems
size_t stepA = srcA.step/sizeof(dataA[0]);
size_t stepB = srcB.step/sizeof(dataB[0]);
size_t stepC = dst.step/sizeof(dataC[0]);
if( !is_1d && cn == 1 )
{
for( k = 0; k < (cols % 2 ? 1 : 2); k++ )
{
if( k == 1 )
dataA += cols - 1, dataB += cols - 1, dataC += cols - 1;
dataC[0] = dataA[0] / (dataB[0] + eps);
if( rows % 2 == 0 )
dataC[(rows-1)*stepC] = dataA[(rows-1)*stepA] / (dataB[(rows-1)*stepB] + eps);
if( !conjB )
for( j = 1; j <= rows - 2; j += 2 )
{
double denom = (double)dataB[j*stepB]*dataB[j*stepB] +
(double)dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + (double)eps;
double re = (double)dataA[j*stepA]*dataB[j*stepB] +
(double)dataA[(j+1)*stepA]*dataB[(j+1)*stepB];
double im = (double)dataA[(j+1)*stepA]*dataB[j*stepB] -
(double)dataA[j*stepA]*dataB[(j+1)*stepB];
dataC[j*stepC] = (float)(re / denom);
dataC[(j+1)*stepC] = (float)(im / denom);
}
else
for( j = 1; j <= rows - 2; j += 2 )
{
double denom = (double)dataB[j*stepB]*dataB[j*stepB] +
(double)dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + (double)eps;
double re = (double)dataA[j*stepA]*dataB[j*stepB] -
(double)dataA[(j+1)*stepA]*dataB[(j+1)*stepB];
double im = (double)dataA[(j+1)*stepA]*dataB[j*stepB] +
(double)dataA[j*stepA]*dataB[(j+1)*stepB];
dataC[j*stepC] = (float)(re / denom);
dataC[(j+1)*stepC] = (float)(im / denom);
}
if( k == 1 )
dataA -= cols - 1, dataB -= cols - 1, dataC -= cols - 1;
}
}
for( ; rows--; dataA += stepA, dataB += stepB, dataC += stepC )
{
if( is_1d && cn == 1 )
{
dataC[0] = dataA[0] / (dataB[0] + eps);
if( cols % 2 == 0 )
dataC[j1] = dataA[j1] / (dataB[j1] + eps);
}
if( !conjB )
for( j = j0; j < j1; j += 2 )
{
double denom = (double)(dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps);
double re = (double)(dataA[j]*dataB[j] + dataA[j+1]*dataB[j+1]);
double im = (double)(dataA[j+1]*dataB[j] - dataA[j]*dataB[j+1]);
dataC[j] = (float)(re / denom);
dataC[j+1] = (float)(im / denom);
}
else
for( j = j0; j < j1; j += 2 )
{
double denom = (double)(dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps);
double re = (double)(dataA[j]*dataB[j] - dataA[j+1]*dataB[j+1]);
double im = (double)(dataA[j+1]*dataB[j] + dataA[j]*dataB[j+1]);
dataC[j] = (float)(re / denom);
dataC[j+1] = (float)(im / denom);
}
}
}
else
{
const double* dataA = (const double*)srcA.data;
const double* dataB = (const double*)srcB.data;
double* dataC = (double*)dst.data;
double eps = DBL_EPSILON; // prevent div0 problems
size_t stepA = srcA.step/sizeof(dataA[0]);
size_t stepB = srcB.step/sizeof(dataB[0]);
size_t stepC = dst.step/sizeof(dataC[0]);
if( !is_1d && cn == 1 )
{
for( k = 0; k < (cols % 2 ? 1 : 2); k++ )
{
if( k == 1 )
dataA += cols - 1, dataB += cols - 1, dataC += cols - 1;
dataC[0] = dataA[0] / (dataB[0] + eps);
if( rows % 2 == 0 )
dataC[(rows-1)*stepC] = dataA[(rows-1)*stepA] / (dataB[(rows-1)*stepB] + eps);
if( !conjB )
for( j = 1; j <= rows - 2; j += 2 )
{
double denom = dataB[j*stepB]*dataB[j*stepB] +
dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + eps;
double re = dataA[j*stepA]*dataB[j*stepB] +
dataA[(j+1)*stepA]*dataB[(j+1)*stepB];
double im = dataA[(j+1)*stepA]*dataB[j*stepB] -
dataA[j*stepA]*dataB[(j+1)*stepB];
dataC[j*stepC] = re / denom;
dataC[(j+1)*stepC] = im / denom;
}
else
for( j = 1; j <= rows - 2; j += 2 )
{
double denom = dataB[j*stepB]*dataB[j*stepB] +
dataB[(j+1)*stepB]*dataB[(j+1)*stepB] + eps;
double re = dataA[j*stepA]*dataB[j*stepB] -
dataA[(j+1)*stepA]*dataB[(j+1)*stepB];
double im = dataA[(j+1)*stepA]*dataB[j*stepB] +
dataA[j*stepA]*dataB[(j+1)*stepB];
dataC[j*stepC] = re / denom;
dataC[(j+1)*stepC] = im / denom;
}
if( k == 1 )
dataA -= cols - 1, dataB -= cols - 1, dataC -= cols - 1;
}
}
for( ; rows--; dataA += stepA, dataB += stepB, dataC += stepC )
{
if( is_1d && cn == 1 )
{
dataC[0] = dataA[0] / (dataB[0] + eps);
if( cols % 2 == 0 )
dataC[j1] = dataA[j1] / (dataB[j1] + eps);
}
if( !conjB )
for( j = j0; j < j1; j += 2 )
{
double denom = dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps;
double re = dataA[j]*dataB[j] + dataA[j+1]*dataB[j+1];
double im = dataA[j+1]*dataB[j] - dataA[j]*dataB[j+1];
dataC[j] = re / denom;
dataC[j+1] = im / denom;
}
else
for( j = j0; j < j1; j += 2 )
{
double denom = dataB[j]*dataB[j] + dataB[j+1]*dataB[j+1] + eps;
double re = dataA[j]*dataB[j] - dataA[j+1]*dataB[j+1];
double im = dataA[j+1]*dataB[j] + dataA[j]*dataB[j+1];
dataC[j] = re / denom;
dataC[j+1] = im / denom;
}
}
}
}
static void fftShift(InputOutputArray _out)
{
Mat out = _out.getMat();
if(out.rows == 1 && out.cols == 1)
{
// trivially shifted.
return;
}
std::vector<Mat> planes;
split(out, planes);
int xMid = out.cols >> 1;
int yMid = out.rows >> 1;
bool is_1d = xMid == 0 || yMid == 0;
if(is_1d)
{
xMid = xMid + yMid;
for(size_t i = 0; i < planes.size(); i++)
{
Mat tmp;
Mat half0(planes[i], Rect(0, 0, xMid, 1));
Mat half1(planes[i], Rect(xMid, 0, xMid, 1));
half0.copyTo(tmp);
half1.copyTo(half0);
tmp.copyTo(half1);
}
}
else
{
for(size_t i = 0; i < planes.size(); i++)
{
// perform quadrant swaps...
Mat tmp;
Mat q0(planes[i], Rect(0, 0, xMid, yMid));
Mat q1(planes[i], Rect(xMid, 0, xMid, yMid));
Mat q2(planes[i], Rect(0, yMid, xMid, yMid));
Mat q3(planes[i], Rect(xMid, yMid, xMid, yMid));
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
}
}
merge(planes, out);
}
static Point2d weightedCentroid(InputArray _src, cv::Point peakLocation, cv::Size weightBoxSize, double* response)
{
Mat src = _src.getMat();
int type = src.type();
CV_Assert( type == CV_32FC1 || type == CV_64FC1 );
int minr = peakLocation.y - (weightBoxSize.height >> 1);
int maxr = peakLocation.y + (weightBoxSize.height >> 1);
int minc = peakLocation.x - (weightBoxSize.width >> 1);
int maxc = peakLocation.x + (weightBoxSize.width >> 1);
Point2d centroid;
double sumIntensity = 0.0;
// clamp the values to min and max if needed.
if(minr < 0)
{
minr = 0;
}
if(minc < 0)
{
minc = 0;
}
if(maxr > src.rows - 1)
{
maxr = src.rows - 1;
}
if(maxc > src.cols - 1)
{
maxc = src.cols - 1;
}
if(type == CV_32FC1)
{
const float* dataIn = (const float*)src.data;
dataIn += minr*src.cols;
for(int y = minr; y <= maxr; y++)
{
for(int x = minc; x <= maxc; x++)
{
centroid.x += (double)x*dataIn[x];
centroid.y += (double)y*dataIn[x];
sumIntensity += (double)dataIn[x];
}
dataIn += src.cols;
}
}
else
{
const double* dataIn = (const double*)src.data;
dataIn += minr*src.cols;
for(int y = minr; y <= maxr; y++)
{
for(int x = minc; x <= maxc; x++)
{
centroid.x += (double)x*dataIn[x];
centroid.y += (double)y*dataIn[x];
sumIntensity += dataIn[x];
}
dataIn += src.cols;
}
}
if(response)
*response = sumIntensity;
sumIntensity += DBL_EPSILON; // prevent div0 problems...
centroid.x /= sumIntensity;
centroid.y /= sumIntensity;
return centroid;
}
}
cv::Point2d cv::phaseCorrelate(InputArray _src1, InputArray _src2, InputArray _window, double* response)
{
Mat src1 = _src1.getMat();
Mat src2 = _src2.getMat();
Mat window = _window.getMat();
CV_Assert( src1.type() == src2.type());
CV_Assert( src1.type() == CV_32FC1 || src1.type() == CV_64FC1 );
CV_Assert( src1.size == src2.size);
if(!window.empty())
{
CV_Assert( src1.type() == window.type());
CV_Assert( src1.size == window.size);
}
int M = getOptimalDFTSize(src1.rows);
int N = getOptimalDFTSize(src1.cols);
Mat padded1, padded2, paddedWin;
if(M != src1.rows || N != src1.cols)
{
copyMakeBorder(src1, padded1, 0, M - src1.rows, 0, N - src1.cols, BORDER_CONSTANT, Scalar::all(0));
copyMakeBorder(src2, padded2, 0, M - src2.rows, 0, N - src2.cols, BORDER_CONSTANT, Scalar::all(0));
if(!window.empty())
{
copyMakeBorder(window, paddedWin, 0, M - window.rows, 0, N - window.cols, BORDER_CONSTANT, Scalar::all(0));
}
}
else
{
padded1 = src1;
padded2 = src2;
paddedWin = window;
}
Mat FFT1, FFT2, P, Pm, C;
// perform window multiplication if available
if(!paddedWin.empty())
{
// apply window to both images before proceeding...
multiply(paddedWin, padded1, padded1);
multiply(paddedWin, padded2, padded2);
}
// execute phase correlation equation
// Reference: http://en.wikipedia.org/wiki/Phase_correlation
dft(padded1, FFT1, DFT_REAL_OUTPUT);
dft(padded2, FFT2, DFT_REAL_OUTPUT);
mulSpectrums(FFT1, FFT2, P, 0, true);
magSpectrums(P, Pm);
divSpectrums(P, Pm, C, 0, false); // FF* / |FF*| (phase correlation equation completed here...)
idft(C, C); // gives us the nice peak shift location...
fftShift(C); // shift the energy to the center of the frame.
// locate the highest peak
Point peakLoc;
minMaxLoc(C, NULL, NULL, NULL, &peakLoc);
// get the phase shift with sub-pixel accuracy, 5x5 window seems about right here...
Point2d t;
t = weightedCentroid(C, peakLoc, Size(5, 5), response);
// max response is M*N (not exactly, might be slightly larger due to rounding errors)
if(response)
*response /= M*N;
// adjust shift relative to image center...
Point2d center((double)padded1.cols / 2.0, (double)padded1.rows / 2.0);
return (center - t);
}
void cv::createHanningWindow(OutputArray _dst, cv::Size winSize, int type)
{
CV_Assert( type == CV_32FC1 || type == CV_64FC1 );
_dst.create(winSize, type);
Mat dst = _dst.getMat();
int rows = dst.rows;
int cols = dst.cols;
if(dst.depth() == CV_32F)
{
for(int i = 0; i < rows; i++)
{
float* dstData = dst.ptr<float>(i);
double wr = 0.5 * (1.0f - cos(2.0f * CV_PI * (double)i / (double)(rows - 1)));
for(int j = 0; j < cols; j++)
{
double wc = 0.5 * (1.0f - cos(2.0f * CV_PI * (double)j / (double)(cols - 1)));
dstData[j] = (float)(wr * wc);
}
}
}
else
{
for(int i = 0; i < rows; i++)
{
double* dstData = dst.ptr<double>(i);
double wr = 0.5 * (1.0 - cos(2.0 * CV_PI * (double)i / (double)(rows - 1)));
for(int j = 0; j < cols; j++)
{
double wc = 0.5 * (1.0 - cos(2.0 * CV_PI * (double)j / (double)(cols - 1)));
dstData[j] = wr * wc;
}
}
}
// perform batch sqrt for SSE performance gains
cv::sqrt(dst, dst);
}