165 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			165 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "opencv2/highgui/highgui.hpp"
 | |
| #include "opencv2/core/core.hpp"
 | |
| #include "opencv2/imgproc/imgproc.hpp"
 | |
| #include "opencv2/features2d/features2d.hpp"
 | |
| 
 | |
| #include <iostream>
 | |
| #include <fstream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| 
 | |
| void help()
 | |
| {
 | |
|     cout << "This program shows the use of the Calonder point descriptor classifier"
 | |
|             "SURF is used to detect interest points, Calonder is used to describe/match these points\n"
 | |
|             "Format:" << endl <<
 | |
|             "   classifier_file(to write) test_image file_with_train_images_filenames(txt)" <<
 | |
|             "   or" << endl <<
 | |
|             "   classifier_file(to read) test_image" << "\n" << endl <<
 | |
|             "Using OpenCV version " << CV_VERSION << "\n" << endl;
 | |
| 
 | |
|     return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Generates random perspective transform of image
 | |
|  */
 | |
| void warpPerspectiveRand( const Mat& src, Mat& dst, Mat& H, RNG& rng )
 | |
| {
 | |
|     H.create(3, 3, CV_32FC1);
 | |
|     H.at<float>(0,0) = rng.uniform( 0.8f, 1.2f);
 | |
|     H.at<float>(0,1) = rng.uniform(-0.1f, 0.1f);
 | |
|     H.at<float>(0,2) = rng.uniform(-0.1f, 0.1f)*src.cols;
 | |
|     H.at<float>(1,0) = rng.uniform(-0.1f, 0.1f);
 | |
|     H.at<float>(1,1) = rng.uniform( 0.8f, 1.2f);
 | |
|     H.at<float>(1,2) = rng.uniform(-0.1f, 0.1f)*src.rows;
 | |
|     H.at<float>(2,0) = rng.uniform( -1e-4f, 1e-4f);
 | |
|     H.at<float>(2,1) = rng.uniform( -1e-4f, 1e-4f);
 | |
|     H.at<float>(2,2) = rng.uniform( 0.8f, 1.2f);
 | |
| 
 | |
|     warpPerspective( src, dst, H, src.size() );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Trains Calonder classifier and writes trained classifier in file:
 | |
|  *      imgFilename - name of .txt file which contains list of full filenames of train images,
 | |
|  *      classifierFilename - name of binary file in which classifier will be written.
 | |
|  *
 | |
|  * To train Calonder classifier RTreeClassifier class need to be used.
 | |
|  */
 | |
| void trainCalonderClassifier( const string& classifierFilename, const string& imgFilename )
 | |
| {
 | |
|     // Reads train images
 | |
|     ifstream is( imgFilename.c_str(), ifstream::in );
 | |
|     vector<Mat> trainImgs;
 | |
|     while( !is.eof() )
 | |
|     {
 | |
|         string str;
 | |
|         getline( is, str );
 | |
|         if (str.empty()) break;
 | |
|         Mat img = imread( str, CV_LOAD_IMAGE_GRAYSCALE );
 | |
|         if( !img.empty() )
 | |
|             trainImgs.push_back( img );
 | |
|     }
 | |
|     if( trainImgs.empty() )
 | |
|     {
 | |
|         cout << "All train images can not be read." << endl;
 | |
|         exit(-1);
 | |
|     }
 | |
|     cout << trainImgs.size() << " train images were read." << endl;
 | |
| 
 | |
|     // Extracts keypoints from train images
 | |
|     SurfFeatureDetector detector;
 | |
|     vector<BaseKeypoint> trainPoints;
 | |
|     vector<IplImage> iplTrainImgs(trainImgs.size());
 | |
|     for( size_t imgIdx = 0; imgIdx < trainImgs.size(); imgIdx++ )
 | |
|     {
 | |
|         iplTrainImgs[imgIdx] = trainImgs[imgIdx];
 | |
|         vector<KeyPoint> kps; detector.detect( trainImgs[imgIdx], kps );
 | |
| 
 | |
|         for( size_t pointIdx = 0; pointIdx < kps.size(); pointIdx++ )
 | |
|         {
 | |
|             Point2f p = kps[pointIdx].pt;
 | |
|             trainPoints.push_back( BaseKeypoint(cvRound(p.x), cvRound(p.y), &iplTrainImgs[imgIdx]) );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Trains Calonder classifier on extracted points
 | |
|     RTreeClassifier classifier;
 | |
|     classifier.train( trainPoints, theRNG(), 48, 9, 100 );
 | |
|     // Writes classifier
 | |
|     classifier.write( classifierFilename.c_str() );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test Calonder classifier to match keypoints on given image:
 | |
|  *      classifierFilename - name of file from which classifier will be read,
 | |
|  *      imgFilename - test image filename.
 | |
|  *
 | |
|  * To calculate keypoint descriptors you may use RTreeClassifier class (as to train),
 | |
|  * but it is convenient to use CalonderDescriptorExtractor class which is wrapper of
 | |
|  * RTreeClassifier.
 | |
|  */
 | |
| void testCalonderClassifier( const string& classifierFilename, const string& imgFilename )
 | |
| {
 | |
|     Mat img1 = imread( imgFilename, CV_LOAD_IMAGE_GRAYSCALE ), img2, H12;
 | |
|     if( img1.empty() )
 | |
|     {
 | |
|         cout << "Test image can not be read." << endl;
 | |
|         exit(-1);
 | |
|     }
 | |
|     warpPerspectiveRand( img1, img2, H12, theRNG() );
 | |
| 
 | |
|     // Exstract keypoints from test images
 | |
|     SurfFeatureDetector detector;
 | |
|     vector<KeyPoint> keypoints1; detector.detect( img1, keypoints1 );
 | |
|     vector<KeyPoint> keypoints2; detector.detect( img2, keypoints2 );
 | |
| 
 | |
|     // Compute descriptors
 | |
|     CalonderDescriptorExtractor<float> de( classifierFilename );
 | |
|     Mat descriptors1;  de.compute( img1, keypoints1, descriptors1 );
 | |
|     Mat descriptors2;  de.compute( img2, keypoints2, descriptors2 );
 | |
| 
 | |
|     // Match descriptors
 | |
|     BruteForceMatcher<L1<float> > matcher;
 | |
|     vector<DMatch> matches;
 | |
|     matcher.match( descriptors1, descriptors2, matches );
 | |
| 
 | |
|     // Prepare inlier mask
 | |
|     vector<char> matchesMask( matches.size(), 0 );
 | |
|     vector<Point2f> points1; KeyPoint::convert( keypoints1, points1 );
 | |
|     vector<Point2f> points2; KeyPoint::convert( keypoints2, points2 );
 | |
|     Mat points1t; perspectiveTransform(Mat(points1), points1t, H12);
 | |
|     for( size_t mi = 0; mi < matches.size(); mi++ )
 | |
|     {
 | |
|         if( norm(points2[matches[mi].trainIdx] - points1t.at<Point2f>((int)mi,0)) < 4 ) // inlier
 | |
|             matchesMask[mi] = 1;
 | |
|     }
 | |
| 
 | |
|     // Draw
 | |
|     Mat drawImg;
 | |
|     drawMatches( img1, keypoints1, img2, keypoints2, matches, drawImg, CV_RGB(0, 255, 0), CV_RGB(0, 0, 255), matchesMask );
 | |
|     string winName = "Matches";
 | |
|     namedWindow( winName, WINDOW_AUTOSIZE );
 | |
|     imshow( winName, drawImg );
 | |
|     waitKey();
 | |
| }
 | |
| 
 | |
| int main( int argc, char **argv )
 | |
| {
 | |
|     if( argc != 4 && argc != 3 )
 | |
|     {
 | |
|         help();
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if( argc == 4 )
 | |
|         trainCalonderClassifier( argv[1], argv[3] );
 | |
| 
 | |
|     testCalonderClassifier( argv[1], argv[2] );
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
