2123 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2123 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #ifdef HAVE_CUDA
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // threshold
 | |
| 
 | |
| struct Threshold : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int, int> >
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int type;
 | |
|     int threshOp;
 | |
| 
 | |
|     cv::Size size;
 | |
|     cv::Mat src;
 | |
|     double maxVal;
 | |
|     double thresh;
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = std::tr1::get<0>(GetParam());
 | |
|         type = std::tr1::get<1>(GetParam());
 | |
|         threshOp = std::tr1::get<2>(GetParam());
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|         size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
 | |
| 
 | |
|         src = cvtest::randomMat(rng, size, type, 0.0, 127.0, false);
 | |
| 
 | |
|         maxVal = rng.uniform(20.0, 127.0);
 | |
|         thresh = rng.uniform(0.0, maxVal);
 | |
| 
 | |
|         cv::threshold(src, dst_gold, thresh, maxVal, threshOp);
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_P(Threshold, Accuracy)
 | |
| {
 | |
|     static const char* ops[] = {"THRESH_BINARY", "THRESH_BINARY_INV", "THRESH_TRUNC", "THRESH_TOZERO", "THRESH_TOZERO_INV"};
 | |
|     const char* threshOpStr = ops[threshOp];
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
|     PRINT_PARAM(size);
 | |
|     PRINT_PARAM(threshOpStr);
 | |
|     PRINT_PARAM(maxVal);
 | |
|     PRINT_PARAM(thresh);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::threshold(cv::gpu::GpuMat(src), gpuRes, thresh, maxVal, threshOp);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, Threshold, testing::Combine(
 | |
|                         testing::ValuesIn(devices()), 
 | |
|                         testing::Values(CV_8U, CV_32F), 
 | |
|                         testing::Values((int)cv::THRESH_BINARY, (int)cv::THRESH_BINARY_INV, (int)cv::THRESH_TRUNC, (int)cv::THRESH_TOZERO, (int)cv::THRESH_TOZERO_INV)));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // resize
 | |
| 
 | |
| struct Resize : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int, int> >
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int type;
 | |
|     int interpolation;
 | |
| 
 | |
|     cv::Size size;
 | |
|     cv::Mat src;
 | |
| 
 | |
|     cv::Mat dst_gold1;
 | |
|     cv::Mat dst_gold2;
 | |
|     
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = std::tr1::get<0>(GetParam());
 | |
|         type = std::tr1::get<1>(GetParam());
 | |
|         interpolation = std::tr1::get<2>(GetParam());
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|         size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
 | |
| 
 | |
|         src = cvtest::randomMat(rng, size, type, 0.0, 127.0, false);
 | |
| 
 | |
|         cv::resize(src, dst_gold1, cv::Size(), 2.0, 2.0, interpolation);
 | |
|         cv::resize(src, dst_gold2, cv::Size(), 0.5, 0.5, interpolation);
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_P(Resize, Accuracy)
 | |
| {
 | |
|     static const char* interpolations[] = {"INTER_NEAREST", "INTER_LINEAR"};
 | |
|     const char* interpolationStr = interpolations[interpolation];
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
|     PRINT_PARAM(size);
 | |
|     PRINT_PARAM(interpolationStr);
 | |
| 
 | |
|     cv::Mat dst1;
 | |
|     cv::Mat dst2;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat dev_src(src);
 | |
|         cv::gpu::GpuMat gpuRes1;
 | |
|         cv::gpu::GpuMat gpuRes2;
 | |
| 
 | |
|         cv::gpu::resize(dev_src, gpuRes1, cv::Size(), 2.0, 2.0, interpolation);
 | |
|         cv::gpu::resize(dev_src, gpuRes2, cv::Size(), 0.5, 0.5, interpolation);
 | |
| 
 | |
|         gpuRes1.download(dst1);
 | |
|         gpuRes2.download(dst2);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_SIMILAR(dst_gold1, dst1, 0.5);
 | |
|     EXPECT_MAT_SIMILAR(dst_gold2, dst2, 0.5);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, Resize, testing::Combine(
 | |
|                         testing::ValuesIn(devices()), 
 | |
|                         testing::Values(CV_8UC1, CV_8UC4), 
 | |
|                         testing::Values((int)cv::INTER_NEAREST, (int)cv::INTER_LINEAR)));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // copyMakeBorder
 | |
| 
 | |
| struct CopyMakeBorder : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int> >
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int type;
 | |
| 
 | |
|     cv::Size size;
 | |
|     cv::Mat src;
 | |
|     int top;
 | |
|     int botton;
 | |
|     int left;
 | |
|     int right;
 | |
|     cv::Scalar val;
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = std::tr1::get<0>(GetParam());
 | |
|         type = std::tr1::get<1>(GetParam());
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|         size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
 | |
| 
 | |
|         src = cvtest::randomMat(rng, size, type, 0.0, 127.0, false);
 | |
|         
 | |
|         top = rng.uniform(1, 10);
 | |
|         botton = rng.uniform(1, 10);
 | |
|         left = rng.uniform(1, 10);
 | |
|         right = rng.uniform(1, 10);
 | |
|         val = cv::Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
 | |
| 
 | |
|         cv::copyMakeBorder(src, dst_gold, top, botton, left, right, cv::BORDER_CONSTANT, val);
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_P(CopyMakeBorder, Accuracy)
 | |
| {
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
|     PRINT_PARAM(size);
 | |
|     PRINT_PARAM(top);
 | |
|     PRINT_PARAM(botton);
 | |
|     PRINT_PARAM(left);
 | |
|     PRINT_PARAM(right);
 | |
|     PRINT_PARAM(val);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::copyMakeBorder(cv::gpu::GpuMat(src), gpuRes, top, botton, left, right, val);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, CopyMakeBorder, testing::Combine(
 | |
|                         testing::ValuesIn(devices()), 
 | |
|                         testing::Values(CV_8UC1, CV_8UC4, CV_32SC1)));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // warpAffine & warpPerspective
 | |
| 
 | |
| static const int warpFlags[] = {cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::INTER_NEAREST | cv::WARP_INVERSE_MAP, cv::INTER_LINEAR | cv::WARP_INVERSE_MAP, cv::INTER_CUBIC | cv::WARP_INVERSE_MAP};
 | |
| static const char* warpFlags_str[] = {"INTER_NEAREST", "INTER_LINEAR", "INTER_CUBIC", "INTER_NEAREST | WARP_INVERSE_MAP", "INTER_LINEAR | WARP_INVERSE_MAP", "INTER_CUBIC | WARP_INVERSE_MAP"};
 | |
| 
 | |
| struct WarpAffine : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int, int> >
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int type;
 | |
|     int flagIdx;
 | |
| 
 | |
|     cv::Size size;
 | |
|     cv::Mat src;
 | |
|     cv::Mat M;
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = std::tr1::get<0>(GetParam());
 | |
|         type = std::tr1::get<1>(GetParam());
 | |
|         flagIdx = std::tr1::get<2>(GetParam());
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|         size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
 | |
| 
 | |
|         src = cvtest::randomMat(rng, size, type, 0.0, 127.0, false);
 | |
| 
 | |
|         static double reflect[2][3] = { {-1,  0, 0},
 | |
|                                         { 0, -1, 0}};
 | |
|         reflect[0][2] = size.width;
 | |
|         reflect[1][2] = size.height;
 | |
|         M = cv::Mat(2, 3, CV_64F, (void*)reflect); 
 | |
| 
 | |
|         cv::warpAffine(src, dst_gold, M, src.size(), warpFlags[flagIdx]);       
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_P(WarpAffine, Accuracy)
 | |
| {
 | |
|     const char* warpFlagStr = warpFlags_str[flagIdx];
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
|     PRINT_PARAM(size);
 | |
|     PRINT_PARAM(warpFlagStr);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::warpAffine(cv::gpu::GpuMat(src), gpuRes, M, src.size(), warpFlags[flagIdx]);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     // Check inner parts (ignoring 1 pixel width border)
 | |
|     cv::Mat dst_gold_roi = dst_gold.rowRange(1, dst_gold.rows - 1).colRange(1, dst_gold.cols - 1);
 | |
|     cv::Mat dst_roi = dst.rowRange(1, dst.rows - 1).colRange(1, dst.cols - 1);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold_roi, dst_roi, 1e-3);
 | |
| }
 | |
| 
 | |
| struct WarpPerspective : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int, int> >
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int type;
 | |
|     int flagIdx;
 | |
| 
 | |
|     cv::Size size;
 | |
|     cv::Mat src;
 | |
|     cv::Mat M;
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = std::tr1::get<0>(GetParam());
 | |
|         type = std::tr1::get<1>(GetParam());
 | |
|         flagIdx = std::tr1::get<2>(GetParam());
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|         size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
 | |
| 
 | |
|         src = cvtest::randomMat(rng, size, type, 0.0, 127.0, false);
 | |
| 
 | |
|         static double reflect[3][3] = { { -1, 0, 0},
 | |
|                                         { 0, -1, 0},
 | |
|                                         { 0,  0, 1}};
 | |
|         reflect[0][2] = size.width;
 | |
|         reflect[1][2] = size.height;
 | |
|         M = cv::Mat(3, 3, CV_64F, (void*)reflect);
 | |
| 
 | |
|         cv::warpPerspective(src, dst_gold, M, src.size(), warpFlags[flagIdx]);       
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_P(WarpPerspective, Accuracy)
 | |
| {
 | |
|     const char* warpFlagStr = warpFlags_str[flagIdx];
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
|     PRINT_PARAM(size);
 | |
|     PRINT_PARAM(warpFlagStr);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::warpPerspective(cv::gpu::GpuMat(src), gpuRes, M, src.size(), warpFlags[flagIdx]);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     // Check inner parts (ignoring 1 pixel width border)
 | |
|     cv::Mat dst_gold_roi = dst_gold.rowRange(1, dst_gold.rows - 1).colRange(1, dst_gold.cols - 1);
 | |
|     cv::Mat dst_roi = dst.rowRange(1, dst.rows - 1).colRange(1, dst.cols - 1);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold_roi, dst_roi, 1e-3);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, WarpAffine, testing::Combine(
 | |
|                         testing::ValuesIn(devices()), 
 | |
|                         testing::Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4),
 | |
|                         testing::Range(0, 6)));
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, WarpPerspective, testing::Combine(
 | |
|                         testing::ValuesIn(devices()), 
 | |
|                         testing::Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4),
 | |
|                         testing::Range(0, 6)));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // integral
 | |
| 
 | |
| struct Integral : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     cv::Size size;
 | |
|     cv::Mat src;
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|         size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150));
 | |
| 
 | |
|         src = cvtest::randomMat(rng, size, CV_8UC1, 0.0, 255.0, false); 
 | |
| 
 | |
|         cv::integral(src, dst_gold, CV_32S);     
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_P(Integral, Accuracy)
 | |
| {
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_PARAM(size);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::integral(cv::gpu::GpuMat(src), gpuRes);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, Integral, testing::ValuesIn(devices()));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // cvtColor
 | |
| 
 | |
| struct CvtColor : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int> >
 | |
| {
 | |
|     static cv::Mat imgBase;
 | |
| 
 | |
|     static void SetUpTestCase() 
 | |
|     {
 | |
|         imgBase = readImage("stereobm/aloe-L.png"); 
 | |
|     }
 | |
| 
 | |
|     static void TearDownTestCase() 
 | |
|     {
 | |
|         imgBase.release();
 | |
|     } 
 | |
| 
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int type;
 | |
| 
 | |
|     cv::Mat img;
 | |
|     
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = std::tr1::get<0>(GetParam());
 | |
|         type = std::tr1::get<1>(GetParam());
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());   
 | |
| 
 | |
|         imgBase.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0);
 | |
|     }
 | |
| };
 | |
| 
 | |
| cv::Mat CvtColor::imgBase;
 | |
| 
 | |
| TEST_P(CvtColor, BGR2RGB)
 | |
| {
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src = img;
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_BGR2RGB);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2RGB);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, BGR2RGBA)
 | |
| {
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src = img;
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_BGR2RGBA);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2RGBA);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, BGRA2RGB)
 | |
| {
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src;
 | |
|     cv::cvtColor(img, src, CV_BGR2BGRA);
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_BGRA2RGB);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGRA2RGB);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, BGR2YCrCb)
 | |
| {
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src = img;
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_BGR2YCrCb);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2YCrCb);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, YCrCb2RGB)
 | |
| {
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src;
 | |
|     cv::cvtColor(img, src, CV_BGR2YCrCb);
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_YCrCb2RGB);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_YCrCb2RGB);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, BGR2YUV)
 | |
| {
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src = img;
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_BGR2YUV);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2YUV);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, YUV2BGR)
 | |
| {
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src;
 | |
|     cv::cvtColor(img, src, CV_BGR2YUV);
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_YUV2BGR);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_YUV2BGR);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, BGR2XYZ)
 | |
| {
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src = img;
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_BGR2XYZ);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2XYZ);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, XYZ2BGR)
 | |
| {
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src;
 | |
|     cv::cvtColor(img, src, CV_BGR2XYZ);
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_XYZ2BGR);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_XYZ2BGR);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, BGR2HSV)
 | |
| {
 | |
|     if (type == CV_16U)
 | |
|         return;
 | |
| 
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src = img;
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_BGR2HSV);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2HSV);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, HSV2BGR)
 | |
| {
 | |
|     if (type == CV_16U)
 | |
|         return;
 | |
| 
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src;
 | |
|     cv::cvtColor(img, src, CV_BGR2HSV);
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_HSV2BGR);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_HSV2BGR);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, BGR2HSV_FULL)
 | |
| {
 | |
|     if (type == CV_16U)
 | |
|         return;
 | |
| 
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src = img;
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_BGR2HSV_FULL);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2HSV_FULL);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, HSV2BGR_FULL)
 | |
| {
 | |
|     if (type == CV_16U)
 | |
|         return;
 | |
| 
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src;
 | |
|     cv::cvtColor(img, src, CV_BGR2HSV_FULL);
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_HSV2BGR_FULL);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_HSV2BGR_FULL);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, BGR2HLS)
 | |
| {
 | |
|     if (type == CV_16U)
 | |
|         return;
 | |
| 
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src = img;
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_BGR2HLS);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2HLS);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, HLS2BGR)
 | |
| {
 | |
|     if (type == CV_16U)
 | |
|         return;
 | |
| 
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src;
 | |
|     cv::cvtColor(img, src, CV_BGR2HLS);
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_HLS2BGR);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_HLS2BGR);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, BGR2HLS_FULL)
 | |
| {
 | |
|     if (type == CV_16U)
 | |
|         return;
 | |
| 
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src = img;
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_BGR2HLS_FULL);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2HLS_FULL);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, HLS2BGR_FULL)
 | |
| {
 | |
|     if (type == CV_16U)
 | |
|         return;
 | |
| 
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src;
 | |
|     cv::cvtColor(img, src, CV_BGR2HLS_FULL);
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_HLS2BGR_FULL);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_HLS2BGR_FULL);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, BGR2GRAY)
 | |
| {
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src = img;
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_BGR2GRAY);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2GRAY);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 | |
| }
 | |
| 
 | |
| TEST_P(CvtColor, GRAY2RGB)
 | |
| {
 | |
|     ASSERT_TRUE(!img.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
| 
 | |
|     cv::Mat src;
 | |
|     cv::cvtColor(img, src, CV_BGR2GRAY);
 | |
|     cv::Mat dst_gold;
 | |
|     cv::cvtColor(src, dst_gold, CV_GRAY2RGB);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpuRes;
 | |
| 
 | |
|         cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_GRAY2RGB);
 | |
| 
 | |
|         gpuRes.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, CvtColor, testing::Combine(
 | |
|                         testing::ValuesIn(devices()), 
 | |
|                         testing::Values(CV_8U, CV_16U, CV_32F)));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // histograms
 | |
| 
 | |
| struct Histograms : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     static cv::Mat hsv;
 | |
| 
 | |
|     static void SetUpTestCase() 
 | |
|     {
 | |
|         cv::Mat img = readImage("stereobm/aloe-L.png");
 | |
|         cv::cvtColor(img, hsv, CV_BGR2HSV);
 | |
|     }
 | |
| 
 | |
|     static void TearDownTestCase() 
 | |
|     {
 | |
|         hsv.release();
 | |
|     }
 | |
| 
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     
 | |
|     int hbins;
 | |
|     float hranges[2];
 | |
| 
 | |
|     cv::Mat hist_gold;
 | |
|     
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         hbins = 30;
 | |
| 
 | |
|         hranges[0] = 0;
 | |
|         hranges[1] = 180;
 | |
| 
 | |
|         int histSize[] = {hbins};
 | |
|         const float* ranges[] = {hranges};
 | |
| 
 | |
|         cv::MatND histnd;
 | |
| 
 | |
|         int channels[] = {0};
 | |
|         cv::calcHist(&hsv, 1, channels, cv::Mat(), histnd, 1, histSize, ranges);
 | |
| 
 | |
|         hist_gold = histnd;
 | |
|         hist_gold = hist_gold.t();
 | |
|         hist_gold.convertTo(hist_gold, CV_32S);
 | |
|     }
 | |
| };
 | |
| 
 | |
| cv::Mat Histograms::hsv;
 | |
| 
 | |
| TEST_P(Histograms, Accuracy)
 | |
| {
 | |
|     ASSERT_TRUE(!hsv.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
| 
 | |
|     cv::Mat hist;
 | |
|     
 | |
|     ASSERT_NO_THROW(
 | |
|         std::vector<cv::gpu::GpuMat> srcs;
 | |
|         cv::gpu::split(cv::gpu::GpuMat(hsv), srcs);
 | |
| 
 | |
|         cv::gpu::GpuMat gpuHist;
 | |
| 
 | |
|         cv::gpu::histEven(srcs[0], gpuHist, hbins, (int)hranges[0], (int)hranges[1]);
 | |
| 
 | |
|         gpuHist.download(hist);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(hist_gold, hist, 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, Histograms, testing::ValuesIn(devices()));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // cornerHarris
 | |
| 
 | |
| static const int borderTypes[] = {cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP, cv::BORDER_REFLECT101, cv::BORDER_TRANSPARENT};
 | |
| static const char* borderTypes_str[] = {"BORDER_REPLICATE", "BORDER_CONSTANT", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT101", "BORDER_TRANSPARENT"};
 | |
| 
 | |
| struct CornerHarris : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int, int> >
 | |
| {
 | |
|     static cv::Mat img;
 | |
| 
 | |
|     static void SetUpTestCase() 
 | |
|     {
 | |
|         img = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE);
 | |
|     }
 | |
| 
 | |
|     static void TearDownTestCase() 
 | |
|     {
 | |
|         img.release();
 | |
|     }
 | |
| 
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int type;
 | |
|     int borderTypeIdx;
 | |
| 
 | |
|     cv::Mat src;
 | |
|     int blockSize;
 | |
|     int apertureSize;        
 | |
|     double k;
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = std::tr1::get<0>(GetParam());
 | |
|         type = std::tr1::get<1>(GetParam());
 | |
|         borderTypeIdx = std::tr1::get<2>(GetParam());
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     
 | |
|         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
|         
 | |
|         img.convertTo(src, type, type == CV_32F ? 1.0 / 255.0 : 1.0);
 | |
|         
 | |
|         blockSize = 1 + rng.next() % 5;
 | |
|         apertureSize = 1 + 2 * (rng.next() % 4);        
 | |
|         k = rng.uniform(0.1, 0.9);
 | |
| 
 | |
|         cv::cornerHarris(src, dst_gold, blockSize, apertureSize, k, borderTypes[borderTypeIdx]);
 | |
|     }
 | |
| };
 | |
| 
 | |
| cv::Mat CornerHarris::img;
 | |
| 
 | |
| TEST_P(CornerHarris, Accuracy)
 | |
| {
 | |
|     const char* borderTypeStr = borderTypes_str[borderTypeIdx];
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
|     PRINT_PARAM(borderTypeStr);
 | |
|     PRINT_PARAM(blockSize);
 | |
|     PRINT_PARAM(apertureSize);
 | |
|     PRINT_PARAM(k);
 | |
| 
 | |
|     cv::Mat dst;
 | |
|     
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat dev_dst;
 | |
|         cv::gpu::cornerHarris(cv::gpu::GpuMat(src), dev_dst, blockSize, apertureSize, k, borderTypes[borderTypeIdx]);
 | |
|         dev_dst.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 1e-3);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, CornerHarris, testing::Combine(
 | |
|                         testing::ValuesIn(devices()), 
 | |
|                         testing::Values(CV_8UC1, CV_32FC1), 
 | |
|                         testing::Values(0, 4)));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // cornerMinEigen
 | |
| 
 | |
| struct CornerMinEigen : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int, int> >
 | |
| {
 | |
|     static cv::Mat img;
 | |
| 
 | |
|     static void SetUpTestCase() 
 | |
|     {
 | |
|         img = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE);
 | |
|     }
 | |
| 
 | |
|     static void TearDownTestCase() 
 | |
|     {
 | |
|         img.release();
 | |
|     }
 | |
| 
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int type;
 | |
|     int borderTypeIdx;
 | |
| 
 | |
|     cv::Mat src;
 | |
|     int blockSize;
 | |
|     int apertureSize;
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = std::tr1::get<0>(GetParam());
 | |
|         type = std::tr1::get<1>(GetParam());
 | |
|         borderTypeIdx = std::tr1::get<2>(GetParam());
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     
 | |
|         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|         img.convertTo(src, type, type == CV_32F ? 1.0 / 255.0 : 1.0);
 | |
|         
 | |
|         blockSize = 1 + rng.next() % 5;
 | |
|         apertureSize = 1 + 2 * (rng.next() % 4);
 | |
| 
 | |
|         cv::cornerMinEigenVal(src, dst_gold, blockSize, apertureSize, borderTypes[borderTypeIdx]);
 | |
|     }
 | |
| };
 | |
| 
 | |
| cv::Mat CornerMinEigen::img;
 | |
| 
 | |
| TEST_P(CornerMinEigen, Accuracy)
 | |
| {
 | |
|     const char* borderTypeStr = borderTypes_str[borderTypeIdx];
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
|     PRINT_PARAM(borderTypeStr);
 | |
|     PRINT_PARAM(blockSize);
 | |
|     PRINT_PARAM(apertureSize);
 | |
| 
 | |
|     cv::Mat dst;
 | |
|     
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat dev_dst;
 | |
|         cv::gpu::cornerMinEigenVal(cv::gpu::GpuMat(src), dev_dst, blockSize, apertureSize, borderTypes[borderTypeIdx]);
 | |
|         dev_dst.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 1e-2);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, CornerMinEigen, testing::Combine(
 | |
|                         testing::ValuesIn(devices()), 
 | |
|                         testing::Values(CV_8UC1, CV_32FC1), 
 | |
|                         testing::Values(0, 4)));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////
 | |
| // ColumnSum
 | |
| 
 | |
| struct ColumnSum : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     cv::Size size;
 | |
|     cv::Mat src;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     
 | |
|         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|         size = cv::Size(rng.uniform(100, 400), rng.uniform(100, 400));
 | |
| 
 | |
|         src = cvtest::randomMat(rng, size, CV_32F, 0.0, 1.0, false);
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_P(ColumnSum, Accuracy)
 | |
| {
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_PARAM(size);
 | |
| 
 | |
|     cv::Mat dst;
 | |
|     
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat dev_dst;
 | |
|         cv::gpu::columnSum(cv::gpu::GpuMat(src), dev_dst);
 | |
|         dev_dst.download(dst);
 | |
|     );
 | |
| 
 | |
|     for (int j = 0; j < src.cols; ++j)
 | |
|     {
 | |
|         float gold = src.at<float>(0, j);
 | |
|         float res = dst.at<float>(0, j);
 | |
|         ASSERT_NEAR(res, gold, 0.5);
 | |
|     }
 | |
| 
 | |
|     for (int i = 1; i < src.rows; ++i)
 | |
|     {
 | |
|         for (int j = 0; j < src.cols; ++j)
 | |
|         {
 | |
|             float gold = src.at<float>(i, j) += src.at<float>(i - 1, j);
 | |
|             float res = dst.at<float>(i, j);
 | |
|             ASSERT_NEAR(res, gold, 0.5);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, ColumnSum, testing::ValuesIn(devices()));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////
 | |
| // Norm
 | |
| 
 | |
| static const int normTypes[] = {cv::NORM_INF, cv::NORM_L1, cv::NORM_L2};
 | |
| static const char* normTypes_str[] = {"NORM_INF", "NORM_L1", "NORM_L2"};
 | |
| 
 | |
| struct Norm : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int, int> >
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int type;
 | |
|     int normTypeIdx;
 | |
| 
 | |
|     cv::Size size;
 | |
|     cv::Mat src;
 | |
| 
 | |
|     double gold;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = std::tr1::get<0>(GetParam());
 | |
|         type = std::tr1::get<1>(GetParam());
 | |
|         normTypeIdx = std::tr1::get<2>(GetParam());
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     
 | |
|         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|         size = cv::Size(rng.uniform(100, 400), rng.uniform(100, 400));
 | |
| 
 | |
|         src = cvtest::randomMat(rng, size, type, 0.0, 10.0, false);
 | |
| 
 | |
|         gold = cv::norm(src, normTypes[normTypeIdx]);
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_P(Norm, Accuracy)
 | |
| {
 | |
|     const char* normTypeStr = normTypes_str[normTypeIdx];
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
|     PRINT_PARAM(size);
 | |
|     PRINT_PARAM(normTypeStr);
 | |
| 
 | |
|     double res;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         res = cv::gpu::norm(cv::gpu::GpuMat(src), normTypes[normTypeIdx]);
 | |
|     );
 | |
| 
 | |
|     ASSERT_NEAR(res, gold, 0.5);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, Norm, testing::Combine(
 | |
|                         testing::ValuesIn(devices()), 
 | |
|                         testing::ValuesIn(types(CV_8U, CV_32F, 1, 1)),
 | |
|                         testing::Range(0, 3)));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // reprojectImageTo3D
 | |
| 
 | |
| struct ReprojectImageTo3D : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     cv::Size size;
 | |
|     cv::Mat disp;
 | |
|     cv::Mat Q;
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     
 | |
|         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|         size = cv::Size(rng.uniform(100, 500), rng.uniform(100, 500));
 | |
| 
 | |
|         disp = cvtest::randomMat(rng, size, CV_8UC1, 5.0, 30.0, false);
 | |
| 
 | |
|         Q = cvtest::randomMat(rng, cv::Size(4, 4), CV_32FC1, 0.1, 1.0, false);
 | |
| 
 | |
|         cv::reprojectImageTo3D(disp, dst_gold, Q, false);
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_P(ReprojectImageTo3D, Accuracy)
 | |
| {
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_PARAM(size);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat gpures;
 | |
|         cv::gpu::reprojectImageTo3D(cv::gpu::GpuMat(disp), gpures, Q);
 | |
|         gpures.download(dst);
 | |
|     );
 | |
| 
 | |
|     ASSERT_EQ(dst_gold.size(), dst.size());
 | |
| 
 | |
|     for (int y = 0; y < dst_gold.rows; ++y)
 | |
|     {
 | |
|         const cv::Vec3f* cpu_row = dst_gold.ptr<cv::Vec3f>(y);
 | |
|         const cv::Vec4f* gpu_row = dst.ptr<cv::Vec4f>(y);
 | |
| 
 | |
|         for (int x = 0; x < dst_gold.cols; ++x)
 | |
|         {
 | |
|             cv::Vec3f gold = cpu_row[x];
 | |
|             cv::Vec4f res = gpu_row[x];
 | |
| 
 | |
|             ASSERT_NEAR(res[0], gold[0], 1e-5);
 | |
|             ASSERT_NEAR(res[1], gold[1], 1e-5);
 | |
|             ASSERT_NEAR(res[2], gold[2], 1e-5);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, ReprojectImageTo3D, testing::ValuesIn(devices()));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // meanShift
 | |
| 
 | |
| struct MeanShift : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     static cv::Mat rgba;
 | |
| 
 | |
|     static void SetUpTestCase() 
 | |
|     {
 | |
|         cv::Mat img = readImage("meanshift/cones.png");
 | |
|         cv::cvtColor(img, rgba, CV_BGR2BGRA);
 | |
|     }
 | |
| 
 | |
|     static void TearDownTestCase() 
 | |
|     {
 | |
|         rgba.release();
 | |
|     }
 | |
| 
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     int spatialRad;
 | |
|     int colorRad;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         spatialRad = 30;
 | |
|         colorRad = 30;
 | |
|     }
 | |
| };
 | |
| 
 | |
| cv::Mat MeanShift::rgba;
 | |
| 
 | |
| TEST_P(MeanShift, Filtering)
 | |
| {
 | |
|     cv::Mat img_template;
 | |
|     
 | |
|     if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
 | |
|         img_template = readImage("meanshift/con_result.png");
 | |
|     else
 | |
|         img_template = readImage("meanshift/con_result_CC1X.png");
 | |
| 
 | |
|     ASSERT_TRUE(!rgba.empty() && !img_template.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat dev_dst;
 | |
|         cv::gpu::meanShiftFiltering(cv::gpu::GpuMat(rgba), dev_dst, spatialRad, colorRad);
 | |
|         dev_dst.download(dst);
 | |
|     );
 | |
| 
 | |
|     ASSERT_EQ(CV_8UC4, dst.type());
 | |
| 
 | |
|     cv::Mat result;
 | |
|     cv::cvtColor(dst, result, CV_BGRA2BGR);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(img_template, result, 0.0);
 | |
| }
 | |
| 
 | |
| TEST_P(MeanShift, Proc)
 | |
| {
 | |
|     cv::Mat spmap_template;
 | |
|     cv::FileStorage fs;
 | |
| 
 | |
|     if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
 | |
|         fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap.yaml", cv::FileStorage::READ);
 | |
|     else
 | |
|         fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap_CC1X.yaml", cv::FileStorage::READ);
 | |
| 
 | |
|     ASSERT_TRUE(fs.isOpened());
 | |
| 
 | |
|     fs["spmap"] >> spmap_template;
 | |
| 
 | |
|     ASSERT_TRUE(!rgba.empty() && !spmap_template.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
| 
 | |
|     cv::Mat rmap_filtered;
 | |
|     cv::Mat rmap;
 | |
|     cv::Mat spmap;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat d_rmap_filtered;
 | |
|         cv::gpu::meanShiftFiltering(cv::gpu::GpuMat(rgba), d_rmap_filtered, spatialRad, colorRad);
 | |
| 
 | |
|         cv::gpu::GpuMat d_rmap;
 | |
|         cv::gpu::GpuMat d_spmap;
 | |
|         cv::gpu::meanShiftProc(cv::gpu::GpuMat(rgba), d_rmap, d_spmap, spatialRad, colorRad);
 | |
| 
 | |
|         d_rmap_filtered.download(rmap_filtered);
 | |
|         d_rmap.download(rmap);
 | |
|         d_spmap.download(spmap);
 | |
|     );
 | |
| 
 | |
|     ASSERT_EQ(CV_8UC4, rmap.type());
 | |
|     
 | |
|     EXPECT_MAT_NEAR(rmap_filtered, rmap, 0.0);    
 | |
|     EXPECT_MAT_NEAR(spmap_template, spmap, 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, MeanShift, testing::ValuesIn(devices()));
 | |
| 
 | |
| struct MeanShiftSegmentation : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int> >
 | |
| {
 | |
|     static cv::Mat rgba;
 | |
| 
 | |
|     static void SetUpTestCase() 
 | |
|     {
 | |
|         cv::Mat img = readImage("meanshift/cones.png");
 | |
|         cv::cvtColor(img, rgba, CV_BGR2BGRA);
 | |
|     }
 | |
| 
 | |
|     static void TearDownTestCase() 
 | |
|     {
 | |
|         rgba.release();
 | |
|     }
 | |
| 
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int minsize;
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = std::tr1::get<0>(GetParam());
 | |
|         minsize = std::tr1::get<1>(GetParam());
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         std::ostringstream path;
 | |
|         path << "meanshift/cones_segmented_sp10_sr10_minsize" << minsize;
 | |
|         if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
 | |
|             path << ".png";
 | |
|         else
 | |
|             path << "_CC1X.png";
 | |
| 
 | |
|         dst_gold = readImage(path.str());
 | |
|     }
 | |
| };
 | |
| 
 | |
| cv::Mat MeanShiftSegmentation::rgba;
 | |
| 
 | |
| TEST_P(MeanShiftSegmentation, Regression)
 | |
| {
 | |
|     ASSERT_TRUE(!rgba.empty() && !dst_gold.empty());
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_PARAM(minsize);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::meanShiftSegmentation(cv::gpu::GpuMat(rgba), dst, 10, 10, minsize);
 | |
|     );
 | |
| 
 | |
|     cv::Mat dst_rgb;
 | |
|     cv::cvtColor(dst, dst_rgb, CV_BGRA2BGR);
 | |
| 
 | |
|     EXPECT_MAT_SIMILAR(dst_gold, dst_rgb, 1e-3);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, MeanShiftSegmentation, testing::Combine(
 | |
|                         testing::ValuesIn(devices()),
 | |
|                         testing::Values(0, 4, 20, 84, 340, 1364)));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // matchTemplate
 | |
| 
 | |
| static const char* matchTemplateMethods[] = {"SQDIFF", "SQDIFF_NORMED", "CCORR", "CCORR_NORMED", "CCOEFF", "CCOEFF_NORMED"};
 | |
| 
 | |
| struct MatchTemplate8U : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int, int> >
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int cn;
 | |
|     int method;
 | |
| 
 | |
|     int n, m, h, w;
 | |
|     cv::Mat image, templ;
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = std::tr1::get<0>(GetParam());
 | |
|         cn = std::tr1::get<1>(GetParam());
 | |
|         method = std::tr1::get<2>(GetParam());
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|         n = rng.uniform(30, 100);
 | |
|         m = rng.uniform(30, 100);
 | |
|         h = rng.uniform(5, n - 1);
 | |
|         w = rng.uniform(5, m - 1);
 | |
| 
 | |
|         image = cvtest::randomMat(rng, cv::Size(m, n), CV_MAKETYPE(CV_8U, cn), 1.0, 10.0, false);
 | |
|         templ = cvtest::randomMat(rng, cv::Size(w, h), CV_MAKETYPE(CV_8U, cn), 1.0, 10.0, false);
 | |
| 
 | |
|         cv::matchTemplate(image, templ, dst_gold, method);
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_P(MatchTemplate8U, Regression)
 | |
| {
 | |
|     const char* matchTemplateMethodStr = matchTemplateMethods[method];
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_PARAM(cn);
 | |
|     PRINT_PARAM(matchTemplateMethodStr);
 | |
|     PRINT_PARAM(n);
 | |
|     PRINT_PARAM(m);
 | |
|     PRINT_PARAM(h);
 | |
|     PRINT_PARAM(w);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat dev_dst;
 | |
|         cv::gpu::matchTemplate(cv::gpu::GpuMat(image), cv::gpu::GpuMat(templ), dev_dst, method);
 | |
|         dev_dst.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 5 * h * w * 1e-4);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate8U, testing::Combine(
 | |
|                         testing::ValuesIn(devices()),
 | |
|                         testing::Range(1, 5), 
 | |
|                         testing::Values((int)CV_TM_SQDIFF, (int)CV_TM_SQDIFF_NORMED, (int)CV_TM_CCORR, (int)CV_TM_CCORR_NORMED, (int)CV_TM_CCOEFF, (int)CV_TM_CCOEFF_NORMED)));
 | |
| 
 | |
| struct MatchTemplate32F : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int, int> >
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int cn;
 | |
|     int method;
 | |
| 
 | |
|     int n, m, h, w;
 | |
|     cv::Mat image, templ;
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = std::tr1::get<0>(GetParam());
 | |
|         cn = std::tr1::get<1>(GetParam());
 | |
|         method = std::tr1::get<2>(GetParam());
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|         n = rng.uniform(30, 100);
 | |
|         m = rng.uniform(30, 100);
 | |
|         h = rng.uniform(5, n - 1);
 | |
|         w = rng.uniform(5, m - 1);
 | |
| 
 | |
|         image = cvtest::randomMat(rng, cv::Size(m, n), CV_MAKETYPE(CV_32F, cn), 0.001, 1.0, false);
 | |
|         templ = cvtest::randomMat(rng, cv::Size(w, h), CV_MAKETYPE(CV_32F, cn), 0.001, 1.0, false);
 | |
| 
 | |
|         cv::matchTemplate(image, templ, dst_gold, method);
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_P(MatchTemplate32F, Regression)
 | |
| {
 | |
|     const char* matchTemplateMethodStr = matchTemplateMethods[method];
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_PARAM(cn);
 | |
|     PRINT_PARAM(matchTemplateMethodStr);
 | |
|     PRINT_PARAM(n);
 | |
|     PRINT_PARAM(m);
 | |
|     PRINT_PARAM(h);
 | |
|     PRINT_PARAM(w);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat dev_dst;
 | |
|         cv::gpu::matchTemplate(cv::gpu::GpuMat(image), cv::gpu::GpuMat(templ), dev_dst, method);
 | |
|         dev_dst.download(dst);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 0.25 * h * w * 1e-4);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate32F, testing::Combine(
 | |
|                         testing::ValuesIn(devices()), 
 | |
|                         testing::Range(1, 5), 
 | |
|                         testing::Values((int)CV_TM_SQDIFF, (int)CV_TM_CCORR)));
 | |
| 
 | |
| struct MatchTemplate : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int> >
 | |
| {
 | |
|     static cv::Mat image;
 | |
|     static cv::Mat pattern;
 | |
| 
 | |
|     static cv::Point maxLocGold;
 | |
| 
 | |
|     static void SetUpTestCase() 
 | |
|     {
 | |
|         image = readImage("matchtemplate/black.png");
 | |
|         pattern = readImage("matchtemplate/cat.png");
 | |
| 
 | |
|         maxLocGold = cv::Point(284, 12);
 | |
|     }
 | |
| 
 | |
|     static void TearDownTestCase() 
 | |
|     {
 | |
|         image.release();
 | |
|         pattern.release();
 | |
|     }
 | |
| 
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int method;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = std::tr1::get<0>(GetParam());
 | |
|         method = std::tr1::get<1>(GetParam());
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| cv::Mat MatchTemplate::image;
 | |
| cv::Mat MatchTemplate::pattern;
 | |
| cv::Point MatchTemplate::maxLocGold;
 | |
| 
 | |
| TEST_P(MatchTemplate, FindPatternInBlack)
 | |
| {
 | |
|     ASSERT_TRUE(!image.empty() && !pattern.empty());
 | |
| 
 | |
|     const char* matchTemplateMethodStr = matchTemplateMethods[method];
 | |
| 
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_PARAM(matchTemplateMethodStr);
 | |
| 
 | |
|     cv::Mat dst;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat dev_dst;
 | |
|         cv::gpu::matchTemplate(cv::gpu::GpuMat(image), cv::gpu::GpuMat(pattern), dev_dst, method);
 | |
|         dev_dst.download(dst);
 | |
|     );
 | |
| 
 | |
|     double maxValue;
 | |
|     cv::Point maxLoc;
 | |
|     cv::minMaxLoc(dst, NULL, &maxValue, NULL, &maxLoc);
 | |
| 
 | |
|     ASSERT_EQ(maxLocGold, maxLoc);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate, testing::Combine(
 | |
|                         testing::ValuesIn(devices()), 
 | |
|                         testing::Values((int)CV_TM_CCOEFF_NORMED, (int)CV_TM_CCORR_NORMED)));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////
 | |
| // MulSpectrums
 | |
| 
 | |
| struct MulSpectrums : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int> >
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int flag;
 | |
| 
 | |
|     cv::Mat a, b; 
 | |
| 
 | |
|     virtual void SetUp() 
 | |
|     {
 | |
|         devInfo = std::tr1::get<0>(GetParam());
 | |
|         flag = std::tr1::get<1>(GetParam());
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|         a = cvtest::randomMat(rng, cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)), CV_32FC2, 0.0, 10.0, false);
 | |
|         b = cvtest::randomMat(rng, a.size(), CV_32FC2, 0.0, 10.0, false);
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_P(MulSpectrums, Simple)
 | |
| {
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_PARAM(flag);
 | |
| 
 | |
|     cv::Mat c_gold;
 | |
|     cv::mulSpectrums(a, b, c_gold, flag, false);
 | |
|     
 | |
|     cv::Mat c;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat d_c;
 | |
| 
 | |
|         cv::gpu::mulSpectrums(cv::gpu::GpuMat(a), cv::gpu::GpuMat(b), d_c, flag, false);
 | |
| 
 | |
|         d_c.download(c);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(c_gold, c, 1e-4);
 | |
| }
 | |
| 
 | |
| TEST_P(MulSpectrums, Scaled)
 | |
| {
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_PARAM(flag);
 | |
| 
 | |
|     float scale = 1.f / a.size().area();
 | |
| 
 | |
|     cv::Mat c_gold;
 | |
|     cv::mulSpectrums(a, b, c_gold, flag, false);
 | |
|     c_gold.convertTo(c_gold, c_gold.type(), scale);
 | |
| 
 | |
|     cv::Mat c;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat d_c;
 | |
| 
 | |
|         cv::gpu::mulAndScaleSpectrums(cv::gpu::GpuMat(a), cv::gpu::GpuMat(b), d_c, flag, scale, false);
 | |
| 
 | |
|         d_c.download(c);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(c_gold, c, 1e-4);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, MulSpectrums, testing::Combine(
 | |
|                         testing::ValuesIn(devices()), 
 | |
|                         testing::Values(0, (int)cv::DFT_ROWS)));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////
 | |
| // Dft
 | |
| 
 | |
| struct Dft : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp() 
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace)
 | |
| {
 | |
|     PRINT_PARAM(hint);
 | |
|     PRINT_PARAM(cols);
 | |
|     PRINT_PARAM(rows);
 | |
|     PRINT_PARAM(flags);
 | |
|     PRINT_PARAM(inplace);
 | |
| 
 | |
|     cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|     cv::Mat a = cvtest::randomMat(rng, cv::Size(cols, rows), CV_32FC2, 0.0, 10.0, false);
 | |
| 
 | |
|     cv::Mat b_gold;
 | |
|     cv::dft(a, b_gold, flags);
 | |
| 
 | |
|     cv::gpu::GpuMat d_b;
 | |
|     cv::gpu::GpuMat d_b_data;
 | |
|     if (inplace)
 | |
|     {
 | |
|         d_b_data.create(1, a.size().area(), CV_32FC2);
 | |
|         d_b = cv::gpu::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
 | |
|     }
 | |
|     cv::gpu::dft(cv::gpu::GpuMat(a), d_b, cv::Size(cols, rows), flags);
 | |
| 
 | |
|     EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
 | |
|     ASSERT_EQ(CV_32F, d_b.depth());
 | |
|     ASSERT_EQ(2, d_b.channels());
 | |
|     EXPECT_MAT_NEAR(b_gold, d_b, rows * cols * 1e-4);
 | |
| }
 | |
| 
 | |
| TEST_P(Dft, C2C)
 | |
| {
 | |
|     PRINT_PARAM(devInfo);
 | |
| 
 | |
|     cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|     int cols = 2 + rng.next() % 100, rows = 2 + rng.next() % 100;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         for (int i = 0; i < 2; ++i)
 | |
|         {
 | |
|             bool inplace = i != 0;
 | |
| 
 | |
|             testC2C("no flags", cols, rows, 0, inplace);
 | |
|             testC2C("no flags 0 1", cols, rows + 1, 0, inplace);
 | |
|             testC2C("no flags 1 0", cols, rows + 1, 0, inplace);
 | |
|             testC2C("no flags 1 1", cols + 1, rows, 0, inplace);
 | |
|             testC2C("DFT_INVERSE", cols, rows, cv::DFT_INVERSE, inplace);
 | |
|             testC2C("DFT_ROWS", cols, rows, cv::DFT_ROWS, inplace);
 | |
|             testC2C("single col", 1, rows, 0, inplace);
 | |
|             testC2C("single row", cols, 1, 0, inplace);
 | |
|             testC2C("single col inversed", 1, rows, cv::DFT_INVERSE, inplace);
 | |
|             testC2C("single row inversed", cols, 1, cv::DFT_INVERSE, inplace);
 | |
|             testC2C("single row DFT_ROWS", cols, 1, cv::DFT_ROWS, inplace);
 | |
|             testC2C("size 1 2", 1, 2, 0, inplace);
 | |
|             testC2C("size 2 1", 2, 1, 0, inplace);
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| static void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace)
 | |
| {
 | |
|     PRINT_PARAM(hint);
 | |
|     PRINT_PARAM(cols);
 | |
|     PRINT_PARAM(rows);
 | |
|     PRINT_PARAM(inplace);
 | |
|     
 | |
|     cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|     cv::Mat a = cvtest::randomMat(rng, cv::Size(cols, rows), CV_32FC1, 0.0, 10.0, false);
 | |
| 
 | |
|     cv::gpu::GpuMat d_b, d_c;
 | |
|     cv::gpu::GpuMat d_b_data, d_c_data;
 | |
|     if (inplace)
 | |
|     {
 | |
|         if (a.cols == 1)
 | |
|         {
 | |
|             d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2);
 | |
|             d_b = cv::gpu::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2);
 | |
|             d_b = cv::gpu::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize());
 | |
|         }
 | |
|         d_c_data.create(1, a.size().area(), CV_32F);
 | |
|         d_c = cv::gpu::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize());
 | |
|     }
 | |
| 
 | |
|     cv::gpu::dft(cv::gpu::GpuMat(a), d_b, cv::Size(cols, rows), 0);
 | |
|     cv::gpu::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
 | |
|     
 | |
|     EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
 | |
|     EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr());
 | |
|     ASSERT_EQ(CV_32F, d_c.depth());
 | |
|     ASSERT_EQ(1, d_c.channels());
 | |
| 
 | |
|     cv::Mat c(d_c);
 | |
|     EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5);
 | |
| }
 | |
| 
 | |
| TEST_P(Dft, R2CThenC2R)
 | |
| {
 | |
|     PRINT_PARAM(devInfo);
 | |
| 
 | |
|     cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|     int cols = 2 + rng.next() % 100, rows = 2 + rng.next() % 100;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         testR2CThenC2R("sanity", cols, rows, false);
 | |
|         testR2CThenC2R("sanity 0 1", cols, rows + 1, false);
 | |
|         testR2CThenC2R("sanity 1 0", cols + 1, rows, false);
 | |
|         testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, false);
 | |
|         testR2CThenC2R("single col", 1, rows, false);
 | |
|         testR2CThenC2R("single col 1", 1, rows + 1, false);
 | |
|         testR2CThenC2R("single row", cols, 1, false);
 | |
|         testR2CThenC2R("single row 1", cols + 1, 1, false);
 | |
| 
 | |
|         testR2CThenC2R("sanity", cols, rows, true);
 | |
|         testR2CThenC2R("sanity 0 1", cols, rows + 1, true);
 | |
|         testR2CThenC2R("sanity 1 0", cols + 1, rows, true);
 | |
|         testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, true);
 | |
|         testR2CThenC2R("single row", cols, 1, true);
 | |
|         testR2CThenC2R("single row 1", cols + 1, 1, true);
 | |
|     );
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, Dft, testing::ValuesIn(devices()));
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////
 | |
| // blend
 | |
| 
 | |
| template <typename T> static void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold)
 | |
| {
 | |
|     result_gold.create(img1.size(), img1.type());
 | |
| 
 | |
|     int cn = img1.channels();
 | |
| 
 | |
|     for (int y = 0; y < img1.rows; ++y)
 | |
|     {
 | |
|         const float* weights1_row = weights1.ptr<float>(y);
 | |
|         const float* weights2_row = weights2.ptr<float>(y);
 | |
|         const T* img1_row = img1.ptr<T>(y);
 | |
|         const T* img2_row = img2.ptr<T>(y);
 | |
|         T* result_gold_row = result_gold.ptr<T>(y);
 | |
|         for (int x = 0; x < img1.cols * cn; ++x)
 | |
|         {
 | |
|             float w1 = weights1_row[x / cn];
 | |
|             float w2 = weights2_row[x / cn];
 | |
|             result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct Blend : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int, int> >
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int depth;
 | |
|     int cn;
 | |
| 
 | |
|     int type;
 | |
|     cv::Size size;
 | |
|     cv::Mat img1;
 | |
|     cv::Mat img2;
 | |
|     cv::Mat weights1;
 | |
|     cv::Mat weights2;
 | |
| 
 | |
|     cv::Mat result_gold;
 | |
| 
 | |
|     virtual void SetUp() 
 | |
|     {
 | |
|         devInfo = std::tr1::get<0>(GetParam());
 | |
|         depth = std::tr1::get<1>(GetParam());
 | |
|         cn = std::tr1::get<2>(GetParam());
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         type = CV_MAKETYPE(depth, cn);
 | |
| 
 | |
|         cv::RNG& rng = cvtest::TS::ptr()->get_rng();
 | |
| 
 | |
|         size = cv::Size(200 + cvtest::randInt(rng) % 1000, 200 + cvtest::randInt(rng) % 1000);
 | |
| 
 | |
|         img1 = cvtest::randomMat(rng, size, type, 0.0, depth == CV_8U ? 255.0 : 1.0, false);
 | |
|         img2 = cvtest::randomMat(rng, size, type, 0.0, depth == CV_8U ? 255.0 : 1.0, false);
 | |
|         weights1 = cvtest::randomMat(rng, size, CV_32F, 0, 1, false);
 | |
|         weights2 = cvtest::randomMat(rng, size, CV_32F, 0, 1, false);
 | |
|         
 | |
|         if (depth == CV_8U)
 | |
|             blendLinearGold<uchar>(img1, img2, weights1, weights2, result_gold);
 | |
|         else
 | |
|             blendLinearGold<float>(img1, img2, weights1, weights2, result_gold);
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_P(Blend, Accuracy)
 | |
| {
 | |
|     PRINT_PARAM(devInfo);
 | |
|     PRINT_TYPE(type);
 | |
|     PRINT_PARAM(size);
 | |
| 
 | |
|     cv::Mat result;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         cv::gpu::GpuMat d_result;
 | |
| 
 | |
|         cv::gpu::blendLinear(cv::gpu::GpuMat(img1), cv::gpu::GpuMat(img2), cv::gpu::GpuMat(weights1), cv::gpu::GpuMat(weights2), d_result);
 | |
| 
 | |
|         d_result.download(result);
 | |
|     );
 | |
| 
 | |
|     EXPECT_MAT_NEAR(result_gold, result, depth == CV_8U ? 1.0 : 1e-5);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, Blend, testing::Combine(
 | |
|                         testing::ValuesIn(devices()),
 | |
|                         testing::Values(CV_8U, CV_32F),
 | |
|                         testing::Range(1, 5)));
 | |
| 
 | |
| ////////////////////////////////////////////////////////
 | |
| // pyrDown
 | |
| 
 | |
| struct PyrDown : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_P(PyrDown, Accuracy)
 | |
| {
 | |
|     PRINT_PARAM(devInfo);
 | |
| 
 | |
|     cv::Mat src;
 | |
|     readImage("stereobm/aloe-L.png").convertTo(src, CV_16S);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::pyrDown(src, dst_gold);
 | |
| 
 | |
|     cv::gpu::GpuMat d_dst;
 | |
|     cv::gpu::pyrDown(cv::gpu::GpuMat(src), d_dst);
 | |
|     cv::Mat dst_mine = d_dst;
 | |
| 
 | |
|     ASSERT_EQ(dst_gold.cols, dst_mine.cols);
 | |
|     ASSERT_EQ(dst_gold.rows, dst_mine.rows);
 | |
|     ASSERT_EQ(dst_gold.type(), dst_mine.type());
 | |
| 
 | |
|     double err = cvtest::crossCorr(dst_gold, dst_mine) /
 | |
|             (cv::norm(dst_gold,cv::NORM_L2)*cv::norm(dst_mine,cv::NORM_L2));
 | |
|     ASSERT_NEAR(err, 1., 1e-2);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, PyrDown, testing::ValuesIn(devices()));
 | |
| 
 | |
| ////////////////////////////////////////////////////////
 | |
| // pyrUp
 | |
| 
 | |
| struct PyrUp: testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST_P(PyrUp, Accuracy)
 | |
| {
 | |
|     PRINT_PARAM(devInfo);
 | |
| 
 | |
|     cv::Mat src;
 | |
|     readImage("stereobm/aloe-L.png").convertTo(src, CV_16S);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::pyrUp(src, dst_gold);
 | |
| 
 | |
|     cv::gpu::GpuMat d_dst;
 | |
|     cv::gpu::pyrUp(cv::gpu::GpuMat(src), d_dst);
 | |
|     cv::Mat dst_mine = d_dst;
 | |
| 
 | |
|     ASSERT_EQ(dst_gold.cols, dst_mine.cols);
 | |
|     ASSERT_EQ(dst_gold.rows, dst_mine.rows);
 | |
|     ASSERT_EQ(dst_gold.type(), dst_mine.type());
 | |
| 
 | |
|     double err = cvtest::crossCorr(dst_gold, dst_mine) /
 | |
|             (cv::norm(dst_gold,cv::NORM_L2)*cv::norm(dst_mine,cv::NORM_L2));
 | |
|     ASSERT_NEAR(err, 1., 1e-2);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(ImgProc, PyrUp, testing::ValuesIn(devices()));
 | |
| 
 | |
| #endif // HAVE_CUDA
 | 
