273 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			273 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* slaed9.f -- translated by f2c (version 20061008).
 | |
|    You must link the resulting object file with libf2c:
 | |
| 	on Microsoft Windows system, link with libf2c.lib;
 | |
| 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | |
| 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | |
| 	-- in that order, at the end of the command line, as in
 | |
| 		cc *.o -lf2c -lm
 | |
| 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | |
| 
 | |
| 		http://www.netlib.org/f2c/libf2c.zip
 | |
| */
 | |
| 
 | |
| #include "clapack.h"
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* Subroutine */ int slaed9_(integer *k, integer *kstart, integer *kstop, 
 | |
| 	integer *n, real *d__, real *q, integer *ldq, real *rho, real *dlamda, 
 | |
| 	 real *w, real *s, integer *lds, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer q_dim1, q_offset, s_dim1, s_offset, i__1, i__2;
 | |
|     real r__1;
 | |
| 
 | |
|     /* Builtin functions */
 | |
|     double sqrt(doublereal), r_sign(real *, real *);
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__, j;
 | |
|     real temp;
 | |
|     extern doublereal snrm2_(integer *, real *, integer *);
 | |
|     extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
 | |
| 	    integer *), slaed4_(integer *, integer *, real *, real *, real *, 
 | |
| 	    real *, real *, integer *);
 | |
|     extern doublereal slamc3_(real *, real *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *);
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK routine (version 3.2) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2006 */
 | |
| 
 | |
| /*     .. Scalar Arguments .. */
 | |
| /*     .. */
 | |
| /*     .. Array Arguments .. */
 | |
| /*     .. */
 | |
| 
 | |
| /*  Purpose */
 | |
| /*  ======= */
 | |
| 
 | |
| /*  SLAED9 finds the roots of the secular equation, as defined by the */
 | |
| /*  values in D, Z, and RHO, between KSTART and KSTOP.  It makes the */
 | |
| /*  appropriate calls to SLAED4 and then stores the new matrix of */
 | |
| /*  eigenvectors for use in calculating the next level of Z vectors. */
 | |
| 
 | |
| /*  Arguments */
 | |
| /*  ========= */
 | |
| 
 | |
| /*  K       (input) INTEGER */
 | |
| /*          The number of terms in the rational function to be solved by */
 | |
| /*          SLAED4.  K >= 0. */
 | |
| 
 | |
| /*  KSTART  (input) INTEGER */
 | |
| /*  KSTOP   (input) INTEGER */
 | |
| /*          The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP */
 | |
| /*          are to be computed.  1 <= KSTART <= KSTOP <= K. */
 | |
| 
 | |
| /*  N       (input) INTEGER */
 | |
| /*          The number of rows and columns in the Q matrix. */
 | |
| /*          N >= K (delation may result in N > K). */
 | |
| 
 | |
| /*  D       (output) REAL array, dimension (N) */
 | |
| /*          D(I) contains the updated eigenvalues */
 | |
| /*          for KSTART <= I <= KSTOP. */
 | |
| 
 | |
| /*  Q       (workspace) REAL array, dimension (LDQ,N) */
 | |
| 
 | |
| /*  LDQ     (input) INTEGER */
 | |
| /*          The leading dimension of the array Q.  LDQ >= max( 1, N ). */
 | |
| 
 | |
| /*  RHO     (input) REAL */
 | |
| /*          The value of the parameter in the rank one update equation. */
 | |
| /*          RHO >= 0 required. */
 | |
| 
 | |
| /*  DLAMDA  (input) REAL array, dimension (K) */
 | |
| /*          The first K elements of this array contain the old roots */
 | |
| /*          of the deflated updating problem.  These are the poles */
 | |
| /*          of the secular equation. */
 | |
| 
 | |
| /*  W       (input) REAL array, dimension (K) */
 | |
| /*          The first K elements of this array contain the components */
 | |
| /*          of the deflation-adjusted updating vector. */
 | |
| 
 | |
| /*  S       (output) REAL array, dimension (LDS, K) */
 | |
| /*          Will contain the eigenvectors of the repaired matrix which */
 | |
| /*          will be stored for subsequent Z vector calculation and */
 | |
| /*          multiplied by the previously accumulated eigenvectors */
 | |
| /*          to update the system. */
 | |
| 
 | |
| /*  LDS     (input) INTEGER */
 | |
| /*          The leading dimension of S.  LDS >= max( 1, K ). */
 | |
| 
 | |
| /*  INFO    (output) INTEGER */
 | |
| /*          = 0:  successful exit. */
 | |
| /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /*          > 0:  if INFO = 1, an eigenvalue did not converge */
 | |
| 
 | |
| /*  Further Details */
 | |
| /*  =============== */
 | |
| 
 | |
| /*  Based on contributions by */
 | |
| /*     Jeff Rutter, Computer Science Division, University of California */
 | |
| /*     at Berkeley, USA */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*     .. Local Scalars .. */
 | |
| /*     .. */
 | |
| /*     .. External Functions .. */
 | |
| /*     .. */
 | |
| /*     .. External Subroutines .. */
 | |
| /*     .. */
 | |
| /*     .. Intrinsic Functions .. */
 | |
| /*     .. */
 | |
| /*     .. Executable Statements .. */
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --d__;
 | |
|     q_dim1 = *ldq;
 | |
|     q_offset = 1 + q_dim1;
 | |
|     q -= q_offset;
 | |
|     --dlamda;
 | |
|     --w;
 | |
|     s_dim1 = *lds;
 | |
|     s_offset = 1 + s_dim1;
 | |
|     s -= s_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
|     if (*k < 0) {
 | |
| 	*info = -1;
 | |
|     } else if (*kstart < 1 || *kstart > max(1,*k)) {
 | |
| 	*info = -2;
 | |
|     } else if (max(1,*kstop) < *kstart || *kstop > max(1,*k)) {
 | |
| 	*info = -3;
 | |
|     } else if (*n < *k) {
 | |
| 	*info = -4;
 | |
|     } else if (*ldq < max(1,*k)) {
 | |
| 	*info = -7;
 | |
|     } else if (*lds < max(1,*k)) {
 | |
| 	*info = -12;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SLAED9", &i__1);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*k == 0) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can */
 | |
| /*     be computed with high relative accuracy (barring over/underflow). */
 | |
| /*     This is a problem on machines without a guard digit in */
 | |
| /*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
 | |
| /*     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), */
 | |
| /*     which on any of these machines zeros out the bottommost */
 | |
| /*     bit of DLAMDA(I) if it is 1; this makes the subsequent */
 | |
| /*     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation */
 | |
| /*     occurs. On binary machines with a guard digit (almost all */
 | |
| /*     machines) it does not change DLAMDA(I) at all. On hexadecimal */
 | |
| /*     and decimal machines with a guard digit, it slightly */
 | |
| /*     changes the bottommost bits of DLAMDA(I). It does not account */
 | |
| /*     for hexadecimal or decimal machines without guard digits */
 | |
| /*     (we know of none). We use a subroutine call to compute */
 | |
| /*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating */
 | |
| /*     this code. */
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	dlamda[i__] = slamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__];
 | |
| /* L10: */
 | |
|     }
 | |
| 
 | |
|     i__1 = *kstop;
 | |
|     for (j = *kstart; j <= i__1; ++j) {
 | |
| 	slaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j], 
 | |
| 		info);
 | |
| 
 | |
| /*        If the zero finder fails, the computation is terminated. */
 | |
| 
 | |
| 	if (*info != 0) {
 | |
| 	    goto L120;
 | |
| 	}
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
|     if (*k == 1 || *k == 2) {
 | |
| 	i__1 = *k;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = *k;
 | |
| 	    for (j = 1; j <= i__2; ++j) {
 | |
| 		s[j + i__ * s_dim1] = q[j + i__ * q_dim1];
 | |
| /* L30: */
 | |
| 	    }
 | |
| /* L40: */
 | |
| 	}
 | |
| 	goto L120;
 | |
|     }
 | |
| 
 | |
| /*     Compute updated W. */
 | |
| 
 | |
|     scopy_(k, &w[1], &c__1, &s[s_offset], &c__1);
 | |
| 
 | |
| /*     Initialize W(I) = Q(I,I) */
 | |
| 
 | |
|     i__1 = *ldq + 1;
 | |
|     scopy_(k, &q[q_offset], &i__1, &w[1], &c__1);
 | |
|     i__1 = *k;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	i__2 = j - 1;
 | |
| 	for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 	    w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
 | |
| /* L50: */
 | |
| 	}
 | |
| 	i__2 = *k;
 | |
| 	for (i__ = j + 1; i__ <= i__2; ++i__) {
 | |
| 	    w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
 | |
| /* L60: */
 | |
| 	}
 | |
| /* L70: */
 | |
|     }
 | |
|     i__1 = *k;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	r__1 = sqrt(-w[i__]);
 | |
| 	w[i__] = r_sign(&r__1, &s[i__ + s_dim1]);
 | |
| /* L80: */
 | |
|     }
 | |
| 
 | |
| /*     Compute eigenvectors of the modified rank-1 modification. */
 | |
| 
 | |
|     i__1 = *k;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	i__2 = *k;
 | |
| 	for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 	    q[i__ + j * q_dim1] = w[i__] / q[i__ + j * q_dim1];
 | |
| /* L90: */
 | |
| 	}
 | |
| 	temp = snrm2_(k, &q[j * q_dim1 + 1], &c__1);
 | |
| 	i__2 = *k;
 | |
| 	for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 	    s[i__ + j * s_dim1] = q[i__ + j * q_dim1] / temp;
 | |
| /* L100: */
 | |
| 	}
 | |
| /* L110: */
 | |
|     }
 | |
| 
 | |
| L120:
 | |
|     return 0;
 | |
| 
 | |
| /*     End of SLAED9 */
 | |
| 
 | |
| } /* slaed9_ */
 | 
