307 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			307 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* dsytd2.f -- translated by f2c (version 20061008).
 | |
|    You must link the resulting object file with libf2c:
 | |
| 	on Microsoft Windows system, link with libf2c.lib;
 | |
| 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | |
| 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | |
| 	-- in that order, at the end of the command line, as in
 | |
| 		cc *.o -lf2c -lm
 | |
| 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | |
| 
 | |
| 		http://www.netlib.org/f2c/libf2c.zip
 | |
| */
 | |
| 
 | |
| #include "clapack.h"
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static doublereal c_b8 = 0.;
 | |
| static doublereal c_b14 = -1.;
 | |
| 
 | |
| /* Subroutine */ int dsytd2_(char *uplo, integer *n, doublereal *a, integer *
 | |
| 	lda, doublereal *d__, doublereal *e, doublereal *tau, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, i__1, i__2, i__3;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__;
 | |
|     extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
 | |
| 	    integer *);
 | |
|     doublereal taui;
 | |
|     extern /* Subroutine */ int dsyr2_(char *, integer *, doublereal *, 
 | |
| 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 | |
| 	    integer *);
 | |
|     doublereal alpha;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *, doublereal *, integer *);
 | |
|     logical upper;
 | |
|     extern /* Subroutine */ int dsymv_(char *, integer *, doublereal *, 
 | |
| 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 | |
| 	    doublereal *, integer *), dlarfg_(integer *, doublereal *, 
 | |
| 	     doublereal *, integer *, doublereal *), xerbla_(char *, integer *
 | |
| );
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK routine (version 3.2) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2006 */
 | |
| 
 | |
| /*     .. Scalar Arguments .. */
 | |
| /*     .. */
 | |
| /*     .. Array Arguments .. */
 | |
| /*     .. */
 | |
| 
 | |
| /*  Purpose */
 | |
| /*  ======= */
 | |
| 
 | |
| /*  DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal */
 | |
| /*  form T by an orthogonal similarity transformation: Q' * A * Q = T. */
 | |
| 
 | |
| /*  Arguments */
 | |
| /*  ========= */
 | |
| 
 | |
| /*  UPLO    (input) CHARACTER*1 */
 | |
| /*          Specifies whether the upper or lower triangular part of the */
 | |
| /*          symmetric matrix A is stored: */
 | |
| /*          = 'U':  Upper triangular */
 | |
| /*          = 'L':  Lower triangular */
 | |
| 
 | |
| /*  N       (input) INTEGER */
 | |
| /*          The order of the matrix A.  N >= 0. */
 | |
| 
 | |
| /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 | |
| /*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
 | |
| /*          n-by-n upper triangular part of A contains the upper */
 | |
| /*          triangular part of the matrix A, and the strictly lower */
 | |
| /*          triangular part of A is not referenced.  If UPLO = 'L', the */
 | |
| /*          leading n-by-n lower triangular part of A contains the lower */
 | |
| /*          triangular part of the matrix A, and the strictly upper */
 | |
| /*          triangular part of A is not referenced. */
 | |
| /*          On exit, if UPLO = 'U', the diagonal and first superdiagonal */
 | |
| /*          of A are overwritten by the corresponding elements of the */
 | |
| /*          tridiagonal matrix T, and the elements above the first */
 | |
| /*          superdiagonal, with the array TAU, represent the orthogonal */
 | |
| /*          matrix Q as a product of elementary reflectors; if UPLO */
 | |
| /*          = 'L', the diagonal and first subdiagonal of A are over- */
 | |
| /*          written by the corresponding elements of the tridiagonal */
 | |
| /*          matrix T, and the elements below the first subdiagonal, with */
 | |
| /*          the array TAU, represent the orthogonal matrix Q as a product */
 | |
| /*          of elementary reflectors. See Further Details. */
 | |
| 
 | |
| /*  LDA     (input) INTEGER */
 | |
| /*          The leading dimension of the array A.  LDA >= max(1,N). */
 | |
| 
 | |
| /*  D       (output) DOUBLE PRECISION array, dimension (N) */
 | |
| /*          The diagonal elements of the tridiagonal matrix T: */
 | |
| /*          D(i) = A(i,i). */
 | |
| 
 | |
| /*  E       (output) DOUBLE PRECISION array, dimension (N-1) */
 | |
| /*          The off-diagonal elements of the tridiagonal matrix T: */
 | |
| /*          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */
 | |
| 
 | |
| /*  TAU     (output) DOUBLE PRECISION array, dimension (N-1) */
 | |
| /*          The scalar factors of the elementary reflectors (see Further */
 | |
| /*          Details). */
 | |
| 
 | |
| /*  INFO    (output) INTEGER */
 | |
| /*          = 0:  successful exit */
 | |
| /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| 
 | |
| /*  Further Details */
 | |
| /*  =============== */
 | |
| 
 | |
| /*  If UPLO = 'U', the matrix Q is represented as a product of elementary */
 | |
| /*  reflectors */
 | |
| 
 | |
| /*     Q = H(n-1) . . . H(2) H(1). */
 | |
| 
 | |
| /*  Each H(i) has the form */
 | |
| 
 | |
| /*     H(i) = I - tau * v * v' */
 | |
| 
 | |
| /*  where tau is a real scalar, and v is a real vector with */
 | |
| /*  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */
 | |
| /*  A(1:i-1,i+1), and tau in TAU(i). */
 | |
| 
 | |
| /*  If UPLO = 'L', the matrix Q is represented as a product of elementary */
 | |
| /*  reflectors */
 | |
| 
 | |
| /*     Q = H(1) H(2) . . . H(n-1). */
 | |
| 
 | |
| /*  Each H(i) has the form */
 | |
| 
 | |
| /*     H(i) = I - tau * v * v' */
 | |
| 
 | |
| /*  where tau is a real scalar, and v is a real vector with */
 | |
| /*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */
 | |
| /*  and tau in TAU(i). */
 | |
| 
 | |
| /*  The contents of A on exit are illustrated by the following examples */
 | |
| /*  with n = 5: */
 | |
| 
 | |
| /*  if UPLO = 'U':                       if UPLO = 'L': */
 | |
| 
 | |
| /*    (  d   e   v2  v3  v4 )              (  d                  ) */
 | |
| /*    (      d   e   v3  v4 )              (  e   d              ) */
 | |
| /*    (          d   e   v4 )              (  v1  e   d          ) */
 | |
| /*    (              d   e  )              (  v1  v2  e   d      ) */
 | |
| /*    (                  d  )              (  v1  v2  v3  e   d  ) */
 | |
| 
 | |
| /*  where d and e denote diagonal and off-diagonal elements of T, and vi */
 | |
| /*  denotes an element of the vector defining H(i). */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*     .. Parameters .. */
 | |
| /*     .. */
 | |
| /*     .. Local Scalars .. */
 | |
| /*     .. */
 | |
| /*     .. External Subroutines .. */
 | |
| /*     .. */
 | |
| /*     .. External Functions .. */
 | |
| /*     .. */
 | |
| /*     .. Intrinsic Functions .. */
 | |
| /*     .. */
 | |
| /*     .. Executable Statements .. */
 | |
| 
 | |
| /*     Test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1;
 | |
|     a -= a_offset;
 | |
|     --d__;
 | |
|     --e;
 | |
|     --tau;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     upper = lsame_(uplo, "U");
 | |
|     if (! upper && ! lsame_(uplo, "L")) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*lda < max(1,*n)) {
 | |
| 	*info = -4;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DSYTD2", &i__1);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n <= 0) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     if (upper) {
 | |
| 
 | |
| /*        Reduce the upper triangle of A */
 | |
| 
 | |
| 	for (i__ = *n - 1; i__ >= 1; --i__) {
 | |
| 
 | |
| /*           Generate elementary reflector H(i) = I - tau * v * v' */
 | |
| /*           to annihilate A(1:i-1,i+1) */
 | |
| 
 | |
| 	    dlarfg_(&i__, &a[i__ + (i__ + 1) * a_dim1], &a[(i__ + 1) * a_dim1 
 | |
| 		    + 1], &c__1, &taui);
 | |
| 	    e[i__] = a[i__ + (i__ + 1) * a_dim1];
 | |
| 
 | |
| 	    if (taui != 0.) {
 | |
| 
 | |
| /*              Apply H(i) from both sides to A(1:i,1:i) */
 | |
| 
 | |
| 		a[i__ + (i__ + 1) * a_dim1] = 1.;
 | |
| 
 | |
| /*              Compute  x := tau * A * v  storing x in TAU(1:i) */
 | |
| 
 | |
| 		dsymv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) * 
 | |
| 			a_dim1 + 1], &c__1, &c_b8, &tau[1], &c__1);
 | |
| 
 | |
| /*              Compute  w := x - 1/2 * tau * (x'*v) * v */
 | |
| 
 | |
| 		alpha = taui * -.5 * ddot_(&i__, &tau[1], &c__1, &a[(i__ + 1) 
 | |
| 			* a_dim1 + 1], &c__1);
 | |
| 		daxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[
 | |
| 			1], &c__1);
 | |
| 
 | |
| /*              Apply the transformation as a rank-2 update: */
 | |
| /*                 A := A - v * w' - w * v' */
 | |
| 
 | |
| 		dsyr2_(uplo, &i__, &c_b14, &a[(i__ + 1) * a_dim1 + 1], &c__1, 
 | |
| 			&tau[1], &c__1, &a[a_offset], lda);
 | |
| 
 | |
| 		a[i__ + (i__ + 1) * a_dim1] = e[i__];
 | |
| 	    }
 | |
| 	    d__[i__ + 1] = a[i__ + 1 + (i__ + 1) * a_dim1];
 | |
| 	    tau[i__] = taui;
 | |
| /* L10: */
 | |
| 	}
 | |
| 	d__[1] = a[a_dim1 + 1];
 | |
|     } else {
 | |
| 
 | |
| /*        Reduce the lower triangle of A */
 | |
| 
 | |
| 	i__1 = *n - 1;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 
 | |
| /*           Generate elementary reflector H(i) = I - tau * v * v' */
 | |
| /*           to annihilate A(i+2:n,i) */
 | |
| 
 | |
| 	    i__2 = *n - i__;
 | |
| /* Computing MIN */
 | |
| 	    i__3 = i__ + 2;
 | |
| 	    dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *n)+ i__ *
 | |
| 		     a_dim1], &c__1, &taui);
 | |
| 	    e[i__] = a[i__ + 1 + i__ * a_dim1];
 | |
| 
 | |
| 	    if (taui != 0.) {
 | |
| 
 | |
| /*              Apply H(i) from both sides to A(i+1:n,i+1:n) */
 | |
| 
 | |
| 		a[i__ + 1 + i__ * a_dim1] = 1.;
 | |
| 
 | |
| /*              Compute  x := tau * A * v  storing y in TAU(i:n-1) */
 | |
| 
 | |
| 		i__2 = *n - i__;
 | |
| 		dsymv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1], 
 | |
| 			lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b8, &tau[
 | |
| 			i__], &c__1);
 | |
| 
 | |
| /*              Compute  w := x - 1/2 * tau * (x'*v) * v */
 | |
| 
 | |
| 		i__2 = *n - i__;
 | |
| 		alpha = taui * -.5 * ddot_(&i__2, &tau[i__], &c__1, &a[i__ + 
 | |
| 			1 + i__ * a_dim1], &c__1);
 | |
| 		i__2 = *n - i__;
 | |
| 		daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
 | |
| 			i__], &c__1);
 | |
| 
 | |
| /*              Apply the transformation as a rank-2 update: */
 | |
| /*                 A := A - v * w' - w * v' */
 | |
| 
 | |
| 		i__2 = *n - i__;
 | |
| 		dsyr2_(uplo, &i__2, &c_b14, &a[i__ + 1 + i__ * a_dim1], &c__1, 
 | |
| 			 &tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) * a_dim1], 
 | |
| 			lda);
 | |
| 
 | |
| 		a[i__ + 1 + i__ * a_dim1] = e[i__];
 | |
| 	    }
 | |
| 	    d__[i__] = a[i__ + i__ * a_dim1];
 | |
| 	    tau[i__] = taui;
 | |
| /* L20: */
 | |
| 	}
 | |
| 	d__[*n] = a[*n + *n * a_dim1];
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| /*     End of DSYTD2 */
 | |
| 
 | |
| } /* dsytd2_ */
 | 
