862 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			862 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* dlarre.f -- translated by f2c (version 20061008).
 | |
|    You must link the resulting object file with libf2c:
 | |
| 	on Microsoft Windows system, link with libf2c.lib;
 | |
| 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | |
| 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | |
| 	-- in that order, at the end of the command line, as in
 | |
| 		cc *.o -lf2c -lm
 | |
| 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | |
| 
 | |
| 		http://www.netlib.org/f2c/libf2c.zip
 | |
| */
 | |
| 
 | |
| #include "clapack.h"
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c__2 = 2;
 | |
| 
 | |
| /* Subroutine */ int dlarre_(char *range, integer *n, doublereal *vl, 
 | |
| 	doublereal *vu, integer *il, integer *iu, doublereal *d__, doublereal 
 | |
| 	*e, doublereal *e2, doublereal *rtol1, doublereal *rtol2, doublereal *
 | |
| 	spltol, integer *nsplit, integer *isplit, integer *m, doublereal *w, 
 | |
| 	doublereal *werr, doublereal *wgap, integer *iblock, integer *indexw, 
 | |
| 	doublereal *gers, doublereal *pivmin, doublereal *work, integer *
 | |
| 	iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1, i__2;
 | |
|     doublereal d__1, d__2, d__3;
 | |
| 
 | |
|     /* Builtin functions */
 | |
|     double sqrt(doublereal), log(doublereal);
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__, j;
 | |
|     doublereal s1, s2;
 | |
|     integer mb;
 | |
|     doublereal gl;
 | |
|     integer in, mm;
 | |
|     doublereal gu;
 | |
|     integer cnt;
 | |
|     doublereal eps, tau, tmp, rtl;
 | |
|     integer cnt1, cnt2;
 | |
|     doublereal tmp1, eabs;
 | |
|     integer iend, jblk;
 | |
|     doublereal eold;
 | |
|     integer indl;
 | |
|     doublereal dmax__, emax;
 | |
|     integer wend, idum, indu;
 | |
|     doublereal rtol;
 | |
|     integer iseed[4];
 | |
|     doublereal avgap, sigma;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer iinfo;
 | |
|     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     logical norep;
 | |
|     extern /* Subroutine */ int dlasq2_(integer *, doublereal *, integer *);
 | |
|     extern doublereal dlamch_(char *);
 | |
|     integer ibegin;
 | |
|     logical forceb;
 | |
|     integer irange;
 | |
|     doublereal sgndef;
 | |
|     extern /* Subroutine */ int dlarra_(integer *, doublereal *, doublereal *, 
 | |
| 	     doublereal *, doublereal *, doublereal *, integer *, integer *, 
 | |
| 	    integer *), dlarrb_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
 | |
| 	     doublereal *, doublereal *, integer *, integer *), dlarrc_(char *
 | |
| , integer *, doublereal *, doublereal *, doublereal *, doublereal 
 | |
| 	    *, doublereal *, integer *, integer *, integer *, integer *);
 | |
|     integer wbegin;
 | |
|     extern /* Subroutine */ int dlarrd_(char *, char *, integer *, doublereal 
 | |
| 	    *, doublereal *, integer *, integer *, doublereal *, doublereal *, 
 | |
| 	     doublereal *, doublereal *, doublereal *, doublereal *, integer *
 | |
| , integer *, integer *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, integer *, integer *, doublereal *, integer *, 
 | |
| 	    integer *);
 | |
|     doublereal safmin, spdiam;
 | |
|     extern /* Subroutine */ int dlarrk_(integer *, integer *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *);
 | |
|     logical usedqd;
 | |
|     doublereal clwdth, isleft;
 | |
|     extern /* Subroutine */ int dlarnv_(integer *, integer *, integer *, 
 | |
| 	    doublereal *);
 | |
|     doublereal isrght, bsrtol, dpivot;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.2) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2006 */
 | |
| 
 | |
| /*     .. Scalar Arguments .. */
 | |
| /*     .. */
 | |
| /*     .. Array Arguments .. */
 | |
| /*     .. */
 | |
| 
 | |
| /*  Purpose */
 | |
| /*  ======= */
 | |
| 
 | |
| /*  To find the desired eigenvalues of a given real symmetric */
 | |
| /*  tridiagonal matrix T, DLARRE sets any "small" off-diagonal */
 | |
| /*  elements to zero, and for each unreduced block T_i, it finds */
 | |
| /*  (a) a suitable shift at one end of the block's spectrum, */
 | |
| /*  (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and */
 | |
| /*  (c) eigenvalues of each L_i D_i L_i^T. */
 | |
| /*  The representations and eigenvalues found are then used by */
 | |
| /*  DSTEMR to compute the eigenvectors of T. */
 | |
| /*  The accuracy varies depending on whether bisection is used to */
 | |
| /*  find a few eigenvalues or the dqds algorithm (subroutine DLASQ2) to */
 | |
| /*  conpute all and then discard any unwanted one. */
 | |
| /*  As an added benefit, DLARRE also outputs the n */
 | |
| /*  Gerschgorin intervals for the matrices L_i D_i L_i^T. */
 | |
| 
 | |
| /*  Arguments */
 | |
| /*  ========= */
 | |
| 
 | |
| /*  RANGE   (input) CHARACTER */
 | |
| /*          = 'A': ("All")   all eigenvalues will be found. */
 | |
| /*          = 'V': ("Value") all eigenvalues in the half-open interval */
 | |
| /*                           (VL, VU] will be found. */
 | |
| /*          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the */
 | |
| /*                           entire matrix) will be found. */
 | |
| 
 | |
| /*  N       (input) INTEGER */
 | |
| /*          The order of the matrix. N > 0. */
 | |
| 
 | |
| /*  VL      (input/output) DOUBLE PRECISION */
 | |
| /*  VU      (input/output) DOUBLE PRECISION */
 | |
| /*          If RANGE='V', the lower and upper bounds for the eigenvalues. */
 | |
| /*          Eigenvalues less than or equal to VL, or greater than VU, */
 | |
| /*          will not be returned.  VL < VU. */
 | |
| /*          If RANGE='I' or ='A', DLARRE computes bounds on the desired */
 | |
| /*          part of the spectrum. */
 | |
| 
 | |
| /*  IL      (input) INTEGER */
 | |
| /*  IU      (input) INTEGER */
 | |
| /*          If RANGE='I', the indices (in ascending order) of the */
 | |
| /*          smallest and largest eigenvalues to be returned. */
 | |
| /*          1 <= IL <= IU <= N. */
 | |
| 
 | |
| /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 | |
| /*          On entry, the N diagonal elements of the tridiagonal */
 | |
| /*          matrix T. */
 | |
| /*          On exit, the N diagonal elements of the diagonal */
 | |
| /*          matrices D_i. */
 | |
| 
 | |
| /*  E       (input/output) DOUBLE PRECISION array, dimension (N) */
 | |
| /*          On entry, the first (N-1) entries contain the subdiagonal */
 | |
| /*          elements of the tridiagonal matrix T; E(N) need not be set. */
 | |
| /*          On exit, E contains the subdiagonal elements of the unit */
 | |
| /*          bidiagonal matrices L_i. The entries E( ISPLIT( I ) ), */
 | |
| /*          1 <= I <= NSPLIT, contain the base points sigma_i on output. */
 | |
| 
 | |
| /*  E2      (input/output) DOUBLE PRECISION array, dimension (N) */
 | |
| /*          On entry, the first (N-1) entries contain the SQUARES of the */
 | |
| /*          subdiagonal elements of the tridiagonal matrix T; */
 | |
| /*          E2(N) need not be set. */
 | |
| /*          On exit, the entries E2( ISPLIT( I ) ), */
 | |
| /*          1 <= I <= NSPLIT, have been set to zero */
 | |
| 
 | |
| /*  RTOL1   (input) DOUBLE PRECISION */
 | |
| /*  RTOL2   (input) DOUBLE PRECISION */
 | |
| /*           Parameters for bisection. */
 | |
| /*           An interval [LEFT,RIGHT] has converged if */
 | |
| /*           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) */
 | |
| 
 | |
| /*  SPLTOL (input) DOUBLE PRECISION */
 | |
| /*          The threshold for splitting. */
 | |
| 
 | |
| /*  NSPLIT  (output) INTEGER */
 | |
| /*          The number of blocks T splits into. 1 <= NSPLIT <= N. */
 | |
| 
 | |
| /*  ISPLIT  (output) INTEGER array, dimension (N) */
 | |
| /*          The splitting points, at which T breaks up into blocks. */
 | |
| /*          The first block consists of rows/columns 1 to ISPLIT(1), */
 | |
| /*          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), */
 | |
| /*          etc., and the NSPLIT-th consists of rows/columns */
 | |
| /*          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. */
 | |
| 
 | |
| /*  M       (output) INTEGER */
 | |
| /*          The total number of eigenvalues (of all L_i D_i L_i^T) */
 | |
| /*          found. */
 | |
| 
 | |
| /*  W       (output) DOUBLE PRECISION array, dimension (N) */
 | |
| /*          The first M elements contain the eigenvalues. The */
 | |
| /*          eigenvalues of each of the blocks, L_i D_i L_i^T, are */
 | |
| /*          sorted in ascending order ( DLARRE may use the */
 | |
| /*          remaining N-M elements as workspace). */
 | |
| 
 | |
| /*  WERR    (output) DOUBLE PRECISION array, dimension (N) */
 | |
| /*          The error bound on the corresponding eigenvalue in W. */
 | |
| 
 | |
| /*  WGAP    (output) DOUBLE PRECISION array, dimension (N) */
 | |
| /*          The separation from the right neighbor eigenvalue in W. */
 | |
| /*          The gap is only with respect to the eigenvalues of the same block */
 | |
| /*          as each block has its own representation tree. */
 | |
| /*          Exception: at the right end of a block we store the left gap */
 | |
| 
 | |
| /*  IBLOCK  (output) INTEGER array, dimension (N) */
 | |
| /*          The indices of the blocks (submatrices) associated with the */
 | |
| /*          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue */
 | |
| /*          W(i) belongs to the first block from the top, =2 if W(i) */
 | |
| /*          belongs to the second block, etc. */
 | |
| 
 | |
| /*  INDEXW  (output) INTEGER array, dimension (N) */
 | |
| /*          The indices of the eigenvalues within each block (submatrix); */
 | |
| /*          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the */
 | |
| /*          i-th eigenvalue W(i) is the 10-th eigenvalue in block 2 */
 | |
| 
 | |
| /*  GERS    (output) DOUBLE PRECISION array, dimension (2*N) */
 | |
| /*          The N Gerschgorin intervals (the i-th Gerschgorin interval */
 | |
| /*          is (GERS(2*i-1), GERS(2*i)). */
 | |
| 
 | |
| /*  PIVMIN  (output) DOUBLE PRECISION */
 | |
| /*          The minimum pivot in the Sturm sequence for T. */
 | |
| 
 | |
| /*  WORK    (workspace) DOUBLE PRECISION array, dimension (6*N) */
 | |
| /*          Workspace. */
 | |
| 
 | |
| /*  IWORK   (workspace) INTEGER array, dimension (5*N) */
 | |
| /*          Workspace. */
 | |
| 
 | |
| /*  INFO    (output) INTEGER */
 | |
| /*          = 0:  successful exit */
 | |
| /*          > 0:  A problem occured in DLARRE. */
 | |
| /*          < 0:  One of the called subroutines signaled an internal problem. */
 | |
| /*                Needs inspection of the corresponding parameter IINFO */
 | |
| /*                for further information. */
 | |
| 
 | |
| /*          =-1:  Problem in DLARRD. */
 | |
| /*          = 2:  No base representation could be found in MAXTRY iterations. */
 | |
| /*                Increasing MAXTRY and recompilation might be a remedy. */
 | |
| /*          =-3:  Problem in DLARRB when computing the refined root */
 | |
| /*                representation for DLASQ2. */
 | |
| /*          =-4:  Problem in DLARRB when preforming bisection on the */
 | |
| /*                desired part of the spectrum. */
 | |
| /*          =-5:  Problem in DLASQ2. */
 | |
| /*          =-6:  Problem in DLASQ2. */
 | |
| 
 | |
| /*  Further Details */
 | |
| /*  The base representations are required to suffer very little */
 | |
| /*  element growth and consequently define all their eigenvalues to */
 | |
| /*  high relative accuracy. */
 | |
| /*  =============== */
 | |
| 
 | |
| /*  Based on contributions by */
 | |
| /*     Beresford Parlett, University of California, Berkeley, USA */
 | |
| /*     Jim Demmel, University of California, Berkeley, USA */
 | |
| /*     Inderjit Dhillon, University of Texas, Austin, USA */
 | |
| /*     Osni Marques, LBNL/NERSC, USA */
 | |
| /*     Christof Voemel, University of California, Berkeley, USA */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*     .. Parameters .. */
 | |
| /*     .. */
 | |
| /*     .. Local Scalars .. */
 | |
| /*     .. */
 | |
| /*     .. Local Arrays .. */
 | |
| /*     .. */
 | |
| /*     .. External Functions .. */
 | |
| /*     .. */
 | |
| /*     .. External Subroutines .. */
 | |
| /*     .. */
 | |
| /*     .. Intrinsic Functions .. */
 | |
| /*     .. */
 | |
| /*     .. Executable Statements .. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --iwork;
 | |
|     --work;
 | |
|     --gers;
 | |
|     --indexw;
 | |
|     --iblock;
 | |
|     --wgap;
 | |
|     --werr;
 | |
|     --w;
 | |
|     --isplit;
 | |
|     --e2;
 | |
|     --e;
 | |
|     --d__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Decode RANGE */
 | |
| 
 | |
|     if (lsame_(range, "A")) {
 | |
| 	irange = 1;
 | |
|     } else if (lsame_(range, "V")) {
 | |
| 	irange = 3;
 | |
|     } else if (lsame_(range, "I")) {
 | |
| 	irange = 2;
 | |
|     }
 | |
|     *m = 0;
 | |
| /*     Get machine constants */
 | |
|     safmin = dlamch_("S");
 | |
|     eps = dlamch_("P");
 | |
| /*     Set parameters */
 | |
|     rtl = sqrt(eps);
 | |
|     bsrtol = sqrt(eps);
 | |
| /*     Treat case of 1x1 matrix for quick return */
 | |
|     if (*n == 1) {
 | |
| 	if (irange == 1 || irange == 3 && d__[1] > *vl && d__[1] <= *vu || 
 | |
| 		irange == 2 && *il == 1 && *iu == 1) {
 | |
| 	    *m = 1;
 | |
| 	    w[1] = d__[1];
 | |
| /*           The computation error of the eigenvalue is zero */
 | |
| 	    werr[1] = 0.;
 | |
| 	    wgap[1] = 0.;
 | |
| 	    iblock[1] = 1;
 | |
| 	    indexw[1] = 1;
 | |
| 	    gers[1] = d__[1];
 | |
| 	    gers[2] = d__[1];
 | |
| 	}
 | |
| /*        store the shift for the initial RRR, which is zero in this case */
 | |
| 	e[1] = 0.;
 | |
| 	return 0;
 | |
|     }
 | |
| /*     General case: tridiagonal matrix of order > 1 */
 | |
| 
 | |
| /*     Init WERR, WGAP. Compute Gerschgorin intervals and spectral diameter. */
 | |
| /*     Compute maximum off-diagonal entry and pivmin. */
 | |
|     gl = d__[1];
 | |
|     gu = d__[1];
 | |
|     eold = 0.;
 | |
|     emax = 0.;
 | |
|     e[*n] = 0.;
 | |
|     i__1 = *n;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	werr[i__] = 0.;
 | |
| 	wgap[i__] = 0.;
 | |
| 	eabs = (d__1 = e[i__], abs(d__1));
 | |
| 	if (eabs >= emax) {
 | |
| 	    emax = eabs;
 | |
| 	}
 | |
| 	tmp1 = eabs + eold;
 | |
| 	gers[(i__ << 1) - 1] = d__[i__] - tmp1;
 | |
| /* Computing MIN */
 | |
| 	d__1 = gl, d__2 = gers[(i__ << 1) - 1];
 | |
| 	gl = min(d__1,d__2);
 | |
| 	gers[i__ * 2] = d__[i__] + tmp1;
 | |
| /* Computing MAX */
 | |
| 	d__1 = gu, d__2 = gers[i__ * 2];
 | |
| 	gu = max(d__1,d__2);
 | |
| 	eold = eabs;
 | |
| /* L5: */
 | |
|     }
 | |
| /*     The minimum pivot allowed in the Sturm sequence for T */
 | |
| /* Computing MAX */
 | |
| /* Computing 2nd power */
 | |
|     d__3 = emax;
 | |
|     d__1 = 1., d__2 = d__3 * d__3;
 | |
|     *pivmin = safmin * max(d__1,d__2);
 | |
| /*     Compute spectral diameter. The Gerschgorin bounds give an */
 | |
| /*     estimate that is wrong by at most a factor of SQRT(2) */
 | |
|     spdiam = gu - gl;
 | |
| /*     Compute splitting points */
 | |
|     dlarra_(n, &d__[1], &e[1], &e2[1], spltol, &spdiam, nsplit, &isplit[1], &
 | |
| 	    iinfo);
 | |
| /*     Can force use of bisection instead of faster DQDS. */
 | |
| /*     Option left in the code for future multisection work. */
 | |
|     forceb = FALSE_;
 | |
| /*     Initialize USEDQD, DQDS should be used for ALLRNG unless someone */
 | |
| /*     explicitly wants bisection. */
 | |
|     usedqd = irange == 1 && ! forceb;
 | |
|     if (irange == 1 && ! forceb) {
 | |
| /*        Set interval [VL,VU] that contains all eigenvalues */
 | |
| 	*vl = gl;
 | |
| 	*vu = gu;
 | |
|     } else {
 | |
| /*        We call DLARRD to find crude approximations to the eigenvalues */
 | |
| /*        in the desired range. In case IRANGE = INDRNG, we also obtain the */
 | |
| /*        interval (VL,VU] that contains all the wanted eigenvalues. */
 | |
| /*        An interval [LEFT,RIGHT] has converged if */
 | |
| /*        RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT)) */
 | |
| /*        DLARRD needs a WORK of size 4*N, IWORK of size 3*N */
 | |
| 	dlarrd_(range, "B", n, vl, vu, il, iu, &gers[1], &bsrtol, &d__[1], &e[
 | |
| 		1], &e2[1], pivmin, nsplit, &isplit[1], &mm, &w[1], &werr[1], 
 | |
| 		vl, vu, &iblock[1], &indexw[1], &work[1], &iwork[1], &iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = -1;
 | |
| 	    return 0;
 | |
| 	}
 | |
| /*        Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0 */
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = mm + 1; i__ <= i__1; ++i__) {
 | |
| 	    w[i__] = 0.;
 | |
| 	    werr[i__] = 0.;
 | |
| 	    iblock[i__] = 0;
 | |
| 	    indexw[i__] = 0;
 | |
| /* L14: */
 | |
| 	}
 | |
|     }
 | |
| /* ** */
 | |
| /*     Loop over unreduced blocks */
 | |
|     ibegin = 1;
 | |
|     wbegin = 1;
 | |
|     i__1 = *nsplit;
 | |
|     for (jblk = 1; jblk <= i__1; ++jblk) {
 | |
| 	iend = isplit[jblk];
 | |
| 	in = iend - ibegin + 1;
 | |
| /*        1 X 1 block */
 | |
| 	if (in == 1) {
 | |
| 	    if (irange == 1 || irange == 3 && d__[ibegin] > *vl && d__[ibegin]
 | |
| 		     <= *vu || irange == 2 && iblock[wbegin] == jblk) {
 | |
| 		++(*m);
 | |
| 		w[*m] = d__[ibegin];
 | |
| 		werr[*m] = 0.;
 | |
| /*              The gap for a single block doesn't matter for the later */
 | |
| /*              algorithm and is assigned an arbitrary large value */
 | |
| 		wgap[*m] = 0.;
 | |
| 		iblock[*m] = jblk;
 | |
| 		indexw[*m] = 1;
 | |
| 		++wbegin;
 | |
| 	    }
 | |
| /*           E( IEND ) holds the shift for the initial RRR */
 | |
| 	    e[iend] = 0.;
 | |
| 	    ibegin = iend + 1;
 | |
| 	    goto L170;
 | |
| 	}
 | |
| 
 | |
| /*        Blocks of size larger than 1x1 */
 | |
| 
 | |
| /*        E( IEND ) will hold the shift for the initial RRR, for now set it =0 */
 | |
| 	e[iend] = 0.;
 | |
| 
 | |
| /*        Find local outer bounds GL,GU for the block */
 | |
| 	gl = d__[ibegin];
 | |
| 	gu = d__[ibegin];
 | |
| 	i__2 = iend;
 | |
| 	for (i__ = ibegin; i__ <= i__2; ++i__) {
 | |
| /* Computing MIN */
 | |
| 	    d__1 = gers[(i__ << 1) - 1];
 | |
| 	    gl = min(d__1,gl);
 | |
| /* Computing MAX */
 | |
| 	    d__1 = gers[i__ * 2];
 | |
| 	    gu = max(d__1,gu);
 | |
| /* L15: */
 | |
| 	}
 | |
| 	spdiam = gu - gl;
 | |
| 	if (! (irange == 1 && ! forceb)) {
 | |
| /*           Count the number of eigenvalues in the current block. */
 | |
| 	    mb = 0;
 | |
| 	    i__2 = mm;
 | |
| 	    for (i__ = wbegin; i__ <= i__2; ++i__) {
 | |
| 		if (iblock[i__] == jblk) {
 | |
| 		    ++mb;
 | |
| 		} else {
 | |
| 		    goto L21;
 | |
| 		}
 | |
| /* L20: */
 | |
| 	    }
 | |
| L21:
 | |
| 	    if (mb == 0) {
 | |
| /*              No eigenvalue in the current block lies in the desired range */
 | |
| /*              E( IEND ) holds the shift for the initial RRR */
 | |
| 		e[iend] = 0.;
 | |
| 		ibegin = iend + 1;
 | |
| 		goto L170;
 | |
| 	    } else {
 | |
| /*              Decide whether dqds or bisection is more efficient */
 | |
| 		usedqd = (doublereal) mb > in * .5 && ! forceb;
 | |
| 		wend = wbegin + mb - 1;
 | |
| /*              Calculate gaps for the current block */
 | |
| /*              In later stages, when representations for individual */
 | |
| /*              eigenvalues are different, we use SIGMA = E( IEND ). */
 | |
| 		sigma = 0.;
 | |
| 		i__2 = wend - 1;
 | |
| 		for (i__ = wbegin; i__ <= i__2; ++i__) {
 | |
| /* Computing MAX */
 | |
| 		    d__1 = 0., d__2 = w[i__ + 1] - werr[i__ + 1] - (w[i__] + 
 | |
| 			    werr[i__]);
 | |
| 		    wgap[i__] = max(d__1,d__2);
 | |
| /* L30: */
 | |
| 		}
 | |
| /* Computing MAX */
 | |
| 		d__1 = 0., d__2 = *vu - sigma - (w[wend] + werr[wend]);
 | |
| 		wgap[wend] = max(d__1,d__2);
 | |
| /*              Find local index of the first and last desired evalue. */
 | |
| 		indl = indexw[wbegin];
 | |
| 		indu = indexw[wend];
 | |
| 	    }
 | |
| 	}
 | |
| 	if (irange == 1 && ! forceb || usedqd) {
 | |
| /*           Case of DQDS */
 | |
| /*           Find approximations to the extremal eigenvalues of the block */
 | |
| 	    dlarrk_(&in, &c__1, &gl, &gu, &d__[ibegin], &e2[ibegin], pivmin, &
 | |
| 		    rtl, &tmp, &tmp1, &iinfo);
 | |
| 	    if (iinfo != 0) {
 | |
| 		*info = -1;
 | |
| 		return 0;
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    d__2 = gl, d__3 = tmp - tmp1 - eps * 100. * (d__1 = tmp - tmp1, 
 | |
| 		    abs(d__1));
 | |
| 	    isleft = max(d__2,d__3);
 | |
| 	    dlarrk_(&in, &in, &gl, &gu, &d__[ibegin], &e2[ibegin], pivmin, &
 | |
| 		    rtl, &tmp, &tmp1, &iinfo);
 | |
| 	    if (iinfo != 0) {
 | |
| 		*info = -1;
 | |
| 		return 0;
 | |
| 	    }
 | |
| /* Computing MIN */
 | |
| 	    d__2 = gu, d__3 = tmp + tmp1 + eps * 100. * (d__1 = tmp + tmp1, 
 | |
| 		    abs(d__1));
 | |
| 	    isrght = min(d__2,d__3);
 | |
| /*           Improve the estimate of the spectral diameter */
 | |
| 	    spdiam = isrght - isleft;
 | |
| 	} else {
 | |
| /*           Case of bisection */
 | |
| /*           Find approximations to the wanted extremal eigenvalues */
 | |
| /* Computing MAX */
 | |
| 	    d__2 = gl, d__3 = w[wbegin] - werr[wbegin] - eps * 100. * (d__1 = 
 | |
| 		    w[wbegin] - werr[wbegin], abs(d__1));
 | |
| 	    isleft = max(d__2,d__3);
 | |
| /* Computing MIN */
 | |
| 	    d__2 = gu, d__3 = w[wend] + werr[wend] + eps * 100. * (d__1 = w[
 | |
| 		    wend] + werr[wend], abs(d__1));
 | |
| 	    isrght = min(d__2,d__3);
 | |
| 	}
 | |
| /*        Decide whether the base representation for the current block */
 | |
| /*        L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I */
 | |
| /*        should be on the left or the right end of the current block. */
 | |
| /*        The strategy is to shift to the end which is "more populated" */
 | |
| /*        Furthermore, decide whether to use DQDS for the computation of */
 | |
| /*        the eigenvalue approximations at the end of DLARRE or bisection. */
 | |
| /*        dqds is chosen if all eigenvalues are desired or the number of */
 | |
| /*        eigenvalues to be computed is large compared to the blocksize. */
 | |
| 	if (irange == 1 && ! forceb) {
 | |
| /*           If all the eigenvalues have to be computed, we use dqd */
 | |
| 	    usedqd = TRUE_;
 | |
| /*           INDL is the local index of the first eigenvalue to compute */
 | |
| 	    indl = 1;
 | |
| 	    indu = in;
 | |
| /*           MB =  number of eigenvalues to compute */
 | |
| 	    mb = in;
 | |
| 	    wend = wbegin + mb - 1;
 | |
| /*           Define 1/4 and 3/4 points of the spectrum */
 | |
| 	    s1 = isleft + spdiam * .25;
 | |
| 	    s2 = isrght - spdiam * .25;
 | |
| 	} else {
 | |
| /*           DLARRD has computed IBLOCK and INDEXW for each eigenvalue */
 | |
| /*           approximation. */
 | |
| /*           choose sigma */
 | |
| 	    if (usedqd) {
 | |
| 		s1 = isleft + spdiam * .25;
 | |
| 		s2 = isrght - spdiam * .25;
 | |
| 	    } else {
 | |
| 		tmp = min(isrght,*vu) - max(isleft,*vl);
 | |
| 		s1 = max(isleft,*vl) + tmp * .25;
 | |
| 		s2 = min(isrght,*vu) - tmp * .25;
 | |
| 	    }
 | |
| 	}
 | |
| /*        Compute the negcount at the 1/4 and 3/4 points */
 | |
| 	if (mb > 1) {
 | |
| 	    dlarrc_("T", &in, &s1, &s2, &d__[ibegin], &e[ibegin], pivmin, &
 | |
| 		    cnt, &cnt1, &cnt2, &iinfo);
 | |
| 	}
 | |
| 	if (mb == 1) {
 | |
| 	    sigma = gl;
 | |
| 	    sgndef = 1.;
 | |
| 	} else if (cnt1 - indl >= indu - cnt2) {
 | |
| 	    if (irange == 1 && ! forceb) {
 | |
| 		sigma = max(isleft,gl);
 | |
| 	    } else if (usedqd) {
 | |
| /*              use Gerschgorin bound as shift to get pos def matrix */
 | |
| /*              for dqds */
 | |
| 		sigma = isleft;
 | |
| 	    } else {
 | |
| /*              use approximation of the first desired eigenvalue of the */
 | |
| /*              block as shift */
 | |
| 		sigma = max(isleft,*vl);
 | |
| 	    }
 | |
| 	    sgndef = 1.;
 | |
| 	} else {
 | |
| 	    if (irange == 1 && ! forceb) {
 | |
| 		sigma = min(isrght,gu);
 | |
| 	    } else if (usedqd) {
 | |
| /*              use Gerschgorin bound as shift to get neg def matrix */
 | |
| /*              for dqds */
 | |
| 		sigma = isrght;
 | |
| 	    } else {
 | |
| /*              use approximation of the first desired eigenvalue of the */
 | |
| /*              block as shift */
 | |
| 		sigma = min(isrght,*vu);
 | |
| 	    }
 | |
| 	    sgndef = -1.;
 | |
| 	}
 | |
| /*        An initial SIGMA has been chosen that will be used for computing */
 | |
| /*        T - SIGMA I = L D L^T */
 | |
| /*        Define the increment TAU of the shift in case the initial shift */
 | |
| /*        needs to be refined to obtain a factorization with not too much */
 | |
| /*        element growth. */
 | |
| 	if (usedqd) {
 | |
| /*           The initial SIGMA was to the outer end of the spectrum */
 | |
| /*           the matrix is definite and we need not retreat. */
 | |
| 	    tau = spdiam * eps * *n + *pivmin * 2.;
 | |
| 	} else {
 | |
| 	    if (mb > 1) {
 | |
| 		clwdth = w[wend] + werr[wend] - w[wbegin] - werr[wbegin];
 | |
| 		avgap = (d__1 = clwdth / (doublereal) (wend - wbegin), abs(
 | |
| 			d__1));
 | |
| 		if (sgndef == 1.) {
 | |
| /* Computing MAX */
 | |
| 		    d__1 = wgap[wbegin];
 | |
| 		    tau = max(d__1,avgap) * .5;
 | |
| /* Computing MAX */
 | |
| 		    d__1 = tau, d__2 = werr[wbegin];
 | |
| 		    tau = max(d__1,d__2);
 | |
| 		} else {
 | |
| /* Computing MAX */
 | |
| 		    d__1 = wgap[wend - 1];
 | |
| 		    tau = max(d__1,avgap) * .5;
 | |
| /* Computing MAX */
 | |
| 		    d__1 = tau, d__2 = werr[wend];
 | |
| 		    tau = max(d__1,d__2);
 | |
| 		}
 | |
| 	    } else {
 | |
| 		tau = werr[wbegin];
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	for (idum = 1; idum <= 6; ++idum) {
 | |
| /*           Compute L D L^T factorization of tridiagonal matrix T - sigma I. */
 | |
| /*           Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of */
 | |
| /*           pivots in WORK(2*IN+1:3*IN) */
 | |
| 	    dpivot = d__[ibegin] - sigma;
 | |
| 	    work[1] = dpivot;
 | |
| 	    dmax__ = abs(work[1]);
 | |
| 	    j = ibegin;
 | |
| 	    i__2 = in - 1;
 | |
| 	    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		work[(in << 1) + i__] = 1. / work[i__];
 | |
| 		tmp = e[j] * work[(in << 1) + i__];
 | |
| 		work[in + i__] = tmp;
 | |
| 		dpivot = d__[j + 1] - sigma - tmp * e[j];
 | |
| 		work[i__ + 1] = dpivot;
 | |
| /* Computing MAX */
 | |
| 		d__1 = dmax__, d__2 = abs(dpivot);
 | |
| 		dmax__ = max(d__1,d__2);
 | |
| 		++j;
 | |
| /* L70: */
 | |
| 	    }
 | |
| /*           check for element growth */
 | |
| 	    if (dmax__ > spdiam * 64.) {
 | |
| 		norep = TRUE_;
 | |
| 	    } else {
 | |
| 		norep = FALSE_;
 | |
| 	    }
 | |
| 	    if (usedqd && ! norep) {
 | |
| /*              Ensure the definiteness of the representation */
 | |
| /*              All entries of D (of L D L^T) must have the same sign */
 | |
| 		i__2 = in;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    tmp = sgndef * work[i__];
 | |
| 		    if (tmp < 0.) {
 | |
| 			norep = TRUE_;
 | |
| 		    }
 | |
| /* L71: */
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (norep) {
 | |
| /*              Note that in the case of IRANGE=ALLRNG, we use the Gerschgorin */
 | |
| /*              shift which makes the matrix definite. So we should end up */
 | |
| /*              here really only in the case of IRANGE = VALRNG or INDRNG. */
 | |
| 		if (idum == 5) {
 | |
| 		    if (sgndef == 1.) {
 | |
| /*                    The fudged Gerschgorin shift should succeed */
 | |
| 			sigma = gl - spdiam * 2. * eps * *n - *pivmin * 4.;
 | |
| 		    } else {
 | |
| 			sigma = gu + spdiam * 2. * eps * *n + *pivmin * 4.;
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    sigma -= sgndef * tau;
 | |
| 		    tau *= 2.;
 | |
| 		}
 | |
| 	    } else {
 | |
| /*              an initial RRR is found */
 | |
| 		goto L83;
 | |
| 	    }
 | |
| /* L80: */
 | |
| 	}
 | |
| /*        if the program reaches this point, no base representation could be */
 | |
| /*        found in MAXTRY iterations. */
 | |
| 	*info = 2;
 | |
| 	return 0;
 | |
| L83:
 | |
| /*        At this point, we have found an initial base representation */
 | |
| /*        T - SIGMA I = L D L^T with not too much element growth. */
 | |
| /*        Store the shift. */
 | |
| 	e[iend] = sigma;
 | |
| /*        Store D and L. */
 | |
| 	dcopy_(&in, &work[1], &c__1, &d__[ibegin], &c__1);
 | |
| 	i__2 = in - 1;
 | |
| 	dcopy_(&i__2, &work[in + 1], &c__1, &e[ibegin], &c__1);
 | |
| 	if (mb > 1) {
 | |
| 
 | |
| /*           Perturb each entry of the base representation by a small */
 | |
| /*           (but random) relative amount to overcome difficulties with */
 | |
| /*           glued matrices. */
 | |
| 
 | |
| 	    for (i__ = 1; i__ <= 4; ++i__) {
 | |
| 		iseed[i__ - 1] = 1;
 | |
| /* L122: */
 | |
| 	    }
 | |
| 	    i__2 = (in << 1) - 1;
 | |
| 	    dlarnv_(&c__2, iseed, &i__2, &work[1]);
 | |
| 	    i__2 = in - 1;
 | |
| 	    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		d__[ibegin + i__ - 1] *= eps * 8. * work[i__] + 1.;
 | |
| 		e[ibegin + i__ - 1] *= eps * 8. * work[in + i__] + 1.;
 | |
| /* L125: */
 | |
| 	    }
 | |
| 	    d__[iend] *= eps * 4. * work[in] + 1.;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| /*        Don't update the Gerschgorin intervals because keeping track */
 | |
| /*        of the updates would be too much work in DLARRV. */
 | |
| /*        We update W instead and use it to locate the proper Gerschgorin */
 | |
| /*        intervals. */
 | |
| /*        Compute the required eigenvalues of L D L' by bisection or dqds */
 | |
| 	if (! usedqd) {
 | |
| /*           If DLARRD has been used, shift the eigenvalue approximations */
 | |
| /*           according to their representation. This is necessary for */
 | |
| /*           a uniform DLARRV since dqds computes eigenvalues of the */
 | |
| /*           shifted representation. In DLARRV, W will always hold the */
 | |
| /*           UNshifted eigenvalue approximation. */
 | |
| 	    i__2 = wend;
 | |
| 	    for (j = wbegin; j <= i__2; ++j) {
 | |
| 		w[j] -= sigma;
 | |
| 		werr[j] += (d__1 = w[j], abs(d__1)) * eps;
 | |
| /* L134: */
 | |
| 	    }
 | |
| /*           call DLARRB to reduce eigenvalue error of the approximations */
 | |
| /*           from DLARRD */
 | |
| 	    i__2 = iend - 1;
 | |
| 	    for (i__ = ibegin; i__ <= i__2; ++i__) {
 | |
| /* Computing 2nd power */
 | |
| 		d__1 = e[i__];
 | |
| 		work[i__] = d__[i__] * (d__1 * d__1);
 | |
| /* L135: */
 | |
| 	    }
 | |
| /*           use bisection to find EV from INDL to INDU */
 | |
| 	    i__2 = indl - 1;
 | |
| 	    dlarrb_(&in, &d__[ibegin], &work[ibegin], &indl, &indu, rtol1, 
 | |
| 		    rtol2, &i__2, &w[wbegin], &wgap[wbegin], &werr[wbegin], &
 | |
| 		    work[(*n << 1) + 1], &iwork[1], pivmin, &spdiam, &in, &
 | |
| 		    iinfo);
 | |
| 	    if (iinfo != 0) {
 | |
| 		*info = -4;
 | |
| 		return 0;
 | |
| 	    }
 | |
| /*           DLARRB computes all gaps correctly except for the last one */
 | |
| /*           Record distance to VU/GU */
 | |
| /* Computing MAX */
 | |
| 	    d__1 = 0., d__2 = *vu - sigma - (w[wend] + werr[wend]);
 | |
| 	    wgap[wend] = max(d__1,d__2);
 | |
| 	    i__2 = indu;
 | |
| 	    for (i__ = indl; i__ <= i__2; ++i__) {
 | |
| 		++(*m);
 | |
| 		iblock[*m] = jblk;
 | |
| 		indexw[*m] = i__;
 | |
| /* L138: */
 | |
| 	    }
 | |
| 	} else {
 | |
| /*           Call dqds to get all eigs (and then possibly delete unwanted */
 | |
| /*           eigenvalues). */
 | |
| /*           Note that dqds finds the eigenvalues of the L D L^T representation */
 | |
| /*           of T to high relative accuracy. High relative accuracy */
 | |
| /*           might be lost when the shift of the RRR is subtracted to obtain */
 | |
| /*           the eigenvalues of T. However, T is not guaranteed to define its */
 | |
| /*           eigenvalues to high relative accuracy anyway. */
 | |
| /*           Set RTOL to the order of the tolerance used in DLASQ2 */
 | |
| /*           This is an ESTIMATED error, the worst case bound is 4*N*EPS */
 | |
| /*           which is usually too large and requires unnecessary work to be */
 | |
| /*           done by bisection when computing the eigenvectors */
 | |
| 	    rtol = log((doublereal) in) * 4. * eps;
 | |
| 	    j = ibegin;
 | |
| 	    i__2 = in - 1;
 | |
| 	    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		work[(i__ << 1) - 1] = (d__1 = d__[j], abs(d__1));
 | |
| 		work[i__ * 2] = e[j] * e[j] * work[(i__ << 1) - 1];
 | |
| 		++j;
 | |
| /* L140: */
 | |
| 	    }
 | |
| 	    work[(in << 1) - 1] = (d__1 = d__[iend], abs(d__1));
 | |
| 	    work[in * 2] = 0.;
 | |
| 	    dlasq2_(&in, &work[1], &iinfo);
 | |
| 	    if (iinfo != 0) {
 | |
| /*              If IINFO = -5 then an index is part of a tight cluster */
 | |
| /*              and should be changed. The index is in IWORK(1) and the */
 | |
| /*              gap is in WORK(N+1) */
 | |
| 		*info = -5;
 | |
| 		return 0;
 | |
| 	    } else {
 | |
| /*              Test that all eigenvalues are positive as expected */
 | |
| 		i__2 = in;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    if (work[i__] < 0.) {
 | |
| 			*info = -6;
 | |
| 			return 0;
 | |
| 		    }
 | |
| /* L149: */
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (sgndef > 0.) {
 | |
| 		i__2 = indu;
 | |
| 		for (i__ = indl; i__ <= i__2; ++i__) {
 | |
| 		    ++(*m);
 | |
| 		    w[*m] = work[in - i__ + 1];
 | |
| 		    iblock[*m] = jblk;
 | |
| 		    indexw[*m] = i__;
 | |
| /* L150: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		i__2 = indu;
 | |
| 		for (i__ = indl; i__ <= i__2; ++i__) {
 | |
| 		    ++(*m);
 | |
| 		    w[*m] = -work[i__];
 | |
| 		    iblock[*m] = jblk;
 | |
| 		    indexw[*m] = i__;
 | |
| /* L160: */
 | |
| 		}
 | |
| 	    }
 | |
| 	    i__2 = *m;
 | |
| 	    for (i__ = *m - mb + 1; i__ <= i__2; ++i__) {
 | |
| /*              the value of RTOL below should be the tolerance in DLASQ2 */
 | |
| 		werr[i__] = rtol * (d__1 = w[i__], abs(d__1));
 | |
| /* L165: */
 | |
| 	    }
 | |
| 	    i__2 = *m - 1;
 | |
| 	    for (i__ = *m - mb + 1; i__ <= i__2; ++i__) {
 | |
| /*              compute the right gap between the intervals */
 | |
| /* Computing MAX */
 | |
| 		d__1 = 0., d__2 = w[i__ + 1] - werr[i__ + 1] - (w[i__] + werr[
 | |
| 			i__]);
 | |
| 		wgap[i__] = max(d__1,d__2);
 | |
| /* L166: */
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    d__1 = 0., d__2 = *vu - sigma - (w[*m] + werr[*m]);
 | |
| 	    wgap[*m] = max(d__1,d__2);
 | |
| 	}
 | |
| /*        proceed with next block */
 | |
| 	ibegin = iend + 1;
 | |
| 	wbegin = wend + 1;
 | |
| L170:
 | |
| 	;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| /*     end of DLARRE */
 | |
| 
 | |
| } /* dlarre_ */
 | 
