79 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			79 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef _OPENCV_HOGFEATURES_H_
 | |
| #define _OPENCV_HOGFEATURES_H_
 | |
| 
 | |
| #include "traincascade_features.h"
 | |
| 
 | |
| //#define TEST_INTHIST_BUILD
 | |
| //#define TEST_FEAT_CALC
 | |
| 
 | |
| #define N_BINS 9
 | |
| #define N_CELLS 4
 | |
| 
 | |
| #define HOGF_NAME "HOGFeatureParams"
 | |
| struct CvHOGFeatureParams : public CvFeatureParams
 | |
| {
 | |
|     CvHOGFeatureParams(); 
 | |
| };
 | |
| 
 | |
| class CvHOGEvaluator : public CvFeatureEvaluator
 | |
| {
 | |
| public:
 | |
|     virtual ~CvHOGEvaluator() {}
 | |
|     virtual void init(const CvFeatureParams *_featureParams,
 | |
|         int _maxSampleCount, Size _winSize );
 | |
|     virtual void setImage(const Mat& img, uchar clsLabel, int idx);    
 | |
|     virtual float operator()(int varIdx, int sampleIdx) const;
 | |
|     virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const;
 | |
| protected:
 | |
|     virtual void generateFeatures();
 | |
|     virtual void integralHistogram(const Mat &img, vector<Mat> &histogram, Mat &norm, int nbins) const;
 | |
|     class Feature
 | |
|     {
 | |
|     public:
 | |
|         Feature();
 | |
|         Feature( int offset, int x, int y, int cellW, int cellH ); 
 | |
|         float calc( const vector<Mat> &_hists, const Mat &_normSum, size_t y, int featComponent ) const; 
 | |
|         void write( FileStorage &fs ) const;
 | |
|         void write( FileStorage &fs, int varIdx ) const;
 | |
| 
 | |
|         Rect rect[N_CELLS]; //cells
 | |
| 
 | |
|         struct
 | |
|         {
 | |
|             int p0, p1, p2, p3;
 | |
|         } fastRect[N_CELLS];
 | |
|     };
 | |
|     vector<Feature> features;
 | |
| 
 | |
|     Mat normSum; //for nomalization calculation (L1 or L2)
 | |
|     vector<Mat> hist;
 | |
| };
 | |
| 
 | |
| inline float CvHOGEvaluator::operator()(int varIdx, int sampleIdx) const
 | |
| {
 | |
|     int featureIdx = varIdx / (N_BINS * N_CELLS);
 | |
|     int componentIdx = varIdx % (N_BINS * N_CELLS);
 | |
|     //return features[featureIdx].calc( hist, sampleIdx, componentIdx); 
 | |
|     return features[featureIdx].calc( hist, normSum, sampleIdx, componentIdx); 
 | |
| }
 | |
| 
 | |
| inline float CvHOGEvaluator::Feature::calc( const vector<Mat>& _hists, const Mat& _normSum, size_t y, int featComponent ) const
 | |
| {
 | |
|     float normFactor;
 | |
|     float res;
 | |
| 
 | |
|     int binIdx = featComponent % N_BINS;
 | |
|     int cellIdx = featComponent / N_BINS;
 | |
| 
 | |
|     const float *hist = _hists[binIdx].ptr<float>((int)y);
 | |
|     res = hist[fastRect[cellIdx].p0] - hist[fastRect[cellIdx].p1] - hist[fastRect[cellIdx].p2] + hist[fastRect[cellIdx].p3];
 | |
| 
 | |
|     const float *normSum = _normSum.ptr<float>((int)y);
 | |
|     normFactor = (float)(normSum[fastRect[0].p0] - normSum[fastRect[1].p1] - normSum[fastRect[2].p2] + normSum[fastRect[3].p3]);
 | |
|     res = (res > 0.001f) ? ( res / (normFactor + 0.001f) ) : 0.f; //for cutting negative values, which apper due to floating precision
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| #endif // _OPENCV_HOGFEATURES_H_
 | 
