Also, removed the one from modules/python/src2/cv.py and cleared its executable bit, since it's not a script.
		
			
				
	
	
		
			174 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			174 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python
 | 
						|
 | 
						|
'''
 | 
						|
Multitarget planar tracking
 | 
						|
==================
 | 
						|
 | 
						|
Example of using features2d framework for interactive video homography matching.
 | 
						|
ORB features and FLANN matcher are used. This sample provides PlaneTracker class
 | 
						|
and an example of its usage.
 | 
						|
 | 
						|
video: http://www.youtube.com/watch?v=pzVbhxx6aog
 | 
						|
 | 
						|
Usage
 | 
						|
-----
 | 
						|
plane_tracker.py [<video source>]
 | 
						|
 | 
						|
Keys:
 | 
						|
   SPACE  -  pause video
 | 
						|
   c      -  clear targets
 | 
						|
 | 
						|
Select a textured planar object to track by drawing a box with a mouse.
 | 
						|
'''
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import cv2
 | 
						|
from collections import namedtuple
 | 
						|
import video
 | 
						|
import common
 | 
						|
 | 
						|
 | 
						|
FLANN_INDEX_KDTREE = 1
 | 
						|
FLANN_INDEX_LSH    = 6
 | 
						|
flann_params= dict(algorithm = FLANN_INDEX_LSH,
 | 
						|
                   table_number = 6, # 12
 | 
						|
                   key_size = 12,     # 20
 | 
						|
                   multi_probe_level = 1) #2
 | 
						|
 | 
						|
MIN_MATCH_COUNT = 10
 | 
						|
 | 
						|
'''
 | 
						|
  image     - image to track
 | 
						|
  rect      - tracked rectangle (x1, y1, x2, y2)
 | 
						|
  keypoints - keypoints detected inside rect
 | 
						|
  descrs    - their descriptors
 | 
						|
  data      - some user-provided data
 | 
						|
'''
 | 
						|
PlanarTarget = namedtuple('PlaneTarget', 'image, rect, keypoints, descrs, data')
 | 
						|
 | 
						|
'''
 | 
						|
  target - reference to PlanarTarget
 | 
						|
  p0     - matched points coords in target image
 | 
						|
  p1     - matched points coords in input frame
 | 
						|
  H      - homography matrix from p0 to p1
 | 
						|
  quad   - target bounary quad in input frame
 | 
						|
'''
 | 
						|
TrackedTarget = namedtuple('TrackedTarget', 'target, p0, p1, H, quad')
 | 
						|
 | 
						|
class PlaneTracker:
 | 
						|
    def __init__(self):
 | 
						|
        self.detector = cv2.ORB( nfeatures = 1000 )
 | 
						|
        self.matcher = cv2.FlannBasedMatcher(flann_params, {})  # bug : need to pass empty dict (#1329)
 | 
						|
        self.targets = []
 | 
						|
 | 
						|
    def add_target(self, image, rect, data=None):
 | 
						|
        '''Add a new tracking target.'''
 | 
						|
        x0, y0, x1, y1 = rect
 | 
						|
        raw_points, raw_descrs = self.detect_features(image)
 | 
						|
        points, descs = [], []
 | 
						|
        for kp, desc in zip(raw_points, raw_descrs):
 | 
						|
            x, y = kp.pt
 | 
						|
            if x0 <= x <= x1 and y0 <= y <= y1:
 | 
						|
                points.append(kp)
 | 
						|
                descs.append(desc)
 | 
						|
        descs = np.uint8(descs)
 | 
						|
        self.matcher.add([descs])
 | 
						|
        target = PlanarTarget(image = image, rect=rect, keypoints = points, descrs=descs, data=None)
 | 
						|
        self.targets.append(target)
 | 
						|
 | 
						|
    def clear(self):
 | 
						|
        '''Remove all targets'''
 | 
						|
        self.targets = []
 | 
						|
        self.matcher.clear()
 | 
						|
 | 
						|
    def track(self, frame):
 | 
						|
        '''Returns a list of detected TrackedTarget objects'''
 | 
						|
        self.frame_points, self.frame_descrs = self.detect_features(frame)
 | 
						|
        if len(self.frame_points) < MIN_MATCH_COUNT:
 | 
						|
            return []
 | 
						|
        matches = self.matcher.knnMatch(self.frame_descrs, k = 2)
 | 
						|
        matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75]
 | 
						|
        if len(matches) < MIN_MATCH_COUNT:
 | 
						|
            return []
 | 
						|
        matches_by_id = [[] for _ in xrange(len(self.targets))]
 | 
						|
        for m in matches:
 | 
						|
            matches_by_id[m.imgIdx].append(m)
 | 
						|
        tracked = []
 | 
						|
        for imgIdx, matches in enumerate(matches_by_id):
 | 
						|
            if len(matches) < MIN_MATCH_COUNT:
 | 
						|
                continue
 | 
						|
            target = self.targets[imgIdx]
 | 
						|
            p0 = [target.keypoints[m.trainIdx].pt for m in matches]
 | 
						|
            p1 = [self.frame_points[m.queryIdx].pt for m in matches]
 | 
						|
            p0, p1 = np.float32((p0, p1))
 | 
						|
            H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0)
 | 
						|
            status = status.ravel() != 0
 | 
						|
            if status.sum() < MIN_MATCH_COUNT:
 | 
						|
                continue
 | 
						|
            p0, p1 = p0[status], p1[status]
 | 
						|
 | 
						|
            x0, y0, x1, y1 = target.rect
 | 
						|
            quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
 | 
						|
            quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)
 | 
						|
 | 
						|
            track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad)
 | 
						|
            tracked.append(track)
 | 
						|
        tracked.sort(key = lambda t: len(t.p0), reverse=True)
 | 
						|
        return tracked
 | 
						|
 | 
						|
    def detect_features(self, frame):
 | 
						|
        '''detect_features(self, frame) -> keypoints, descrs'''
 | 
						|
        keypoints, descrs = self.detector.detectAndCompute(frame, None)
 | 
						|
        if descrs is None:  # detectAndCompute returns descs=None if not keypoints found
 | 
						|
            descrs = []
 | 
						|
        return keypoints, descrs
 | 
						|
 | 
						|
 | 
						|
class App:
 | 
						|
    def __init__(self, src):
 | 
						|
        self.cap = video.create_capture(src)
 | 
						|
        self.frame = None
 | 
						|
        self.paused = False
 | 
						|
        self.tracker = PlaneTracker()
 | 
						|
 | 
						|
        cv2.namedWindow('plane')
 | 
						|
        self.rect_sel = common.RectSelector('plane', self.on_rect)
 | 
						|
 | 
						|
    def on_rect(self, rect):
 | 
						|
        self.tracker.add_target(self.frame, rect)
 | 
						|
 | 
						|
    def run(self):
 | 
						|
        while True:
 | 
						|
            playing = not self.paused and not self.rect_sel.dragging
 | 
						|
            if playing or self.frame is None:
 | 
						|
                ret, frame = self.cap.read()
 | 
						|
                if not ret:
 | 
						|
                    break
 | 
						|
                self.frame = frame.copy()
 | 
						|
 | 
						|
            vis = self.frame.copy()
 | 
						|
            if playing:
 | 
						|
                tracked = self.tracker.track(self.frame)
 | 
						|
                for tr in tracked:
 | 
						|
                    cv2.polylines(vis, [np.int32(tr.quad)], True, (255, 255, 255), 2)
 | 
						|
                    for (x, y) in np.int32(tr.p1):
 | 
						|
                        cv2.circle(vis, (x, y), 2, (255, 255, 255))
 | 
						|
 | 
						|
            self.rect_sel.draw(vis)
 | 
						|
            cv2.imshow('plane', vis)
 | 
						|
            ch = cv2.waitKey(1)
 | 
						|
            if ch == ord(' '):
 | 
						|
                self.paused = not self.paused
 | 
						|
            if ch == ord('c'):
 | 
						|
                self.tracker.clear()
 | 
						|
            if ch == 27:
 | 
						|
                break
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    print __doc__
 | 
						|
 | 
						|
    import sys
 | 
						|
    try: video_src = sys.argv[1]
 | 
						|
    except: video_src = 0
 | 
						|
    App(video_src).run()
 |