99 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			99 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/python
 | 
						|
"""
 | 
						|
   Tracking of rotating point.
 | 
						|
   Rotation speed is constant.
 | 
						|
   Both state and measurements vectors are 1D (a point angle),
 | 
						|
   Measurement is the real point angle + gaussian noise.
 | 
						|
   The real and the estimated points are connected with yellow line segment,
 | 
						|
   the real and the measured points are connected with red line segment.
 | 
						|
   (if Kalman filter works correctly,
 | 
						|
    the yellow segment should be shorter than the red one).
 | 
						|
   Pressing any key (except ESC) will reset the tracking with a different speed.
 | 
						|
   Pressing ESC will stop the program.
 | 
						|
"""
 | 
						|
import urllib2
 | 
						|
import cv2.cv as cv
 | 
						|
from math import cos, sin, sqrt
 | 
						|
import sys
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    A = [ [1, 1], [0, 1] ]
 | 
						|
 | 
						|
    img = cv.CreateImage((500, 500), 8, 3)
 | 
						|
    kalman = cv.CreateKalman(2, 1, 0)
 | 
						|
    state = cv.CreateMat(2, 1, cv.CV_32FC1)  # (phi, delta_phi)
 | 
						|
    process_noise = cv.CreateMat(2, 1, cv.CV_32FC1)
 | 
						|
    measurement = cv.CreateMat(1, 1, cv.CV_32FC1)
 | 
						|
    rng = cv.RNG(-1)
 | 
						|
    code = -1L
 | 
						|
 | 
						|
    cv.Zero(measurement)
 | 
						|
    cv.NamedWindow("Kalman", 1)
 | 
						|
 | 
						|
    while True:
 | 
						|
        cv.RandArr(rng, state, cv.CV_RAND_NORMAL, cv.RealScalar(0), cv.RealScalar(0.1))
 | 
						|
 | 
						|
        kalman.transition_matrix[0,0] = 1
 | 
						|
        kalman.transition_matrix[0,1] = 1
 | 
						|
        kalman.transition_matrix[1,0] = 0
 | 
						|
        kalman.transition_matrix[1,1] = 1
 | 
						|
 | 
						|
        cv.SetIdentity(kalman.measurement_matrix, cv.RealScalar(1))
 | 
						|
        cv.SetIdentity(kalman.process_noise_cov, cv.RealScalar(1e-5))
 | 
						|
        cv.SetIdentity(kalman.measurement_noise_cov, cv.RealScalar(1e-1))
 | 
						|
        cv.SetIdentity(kalman.error_cov_post, cv.RealScalar(1))
 | 
						|
        cv.RandArr(rng, kalman.state_post, cv.CV_RAND_NORMAL, cv.RealScalar(0), cv.RealScalar(0.1))
 | 
						|
 | 
						|
 | 
						|
        while True:
 | 
						|
            def calc_point(angle):
 | 
						|
                return (cv.Round(img.width/2 + img.width/3*cos(angle)),
 | 
						|
                         cv.Round(img.height/2 - img.width/3*sin(angle)))
 | 
						|
 | 
						|
            state_angle = state[0,0]
 | 
						|
            state_pt = calc_point(state_angle)
 | 
						|
 | 
						|
            prediction = cv.KalmanPredict(kalman)
 | 
						|
            predict_angle = prediction[0, 0]
 | 
						|
            predict_pt = calc_point(predict_angle)
 | 
						|
 | 
						|
            cv.RandArr(rng, measurement, cv.CV_RAND_NORMAL, cv.RealScalar(0),
 | 
						|
                       cv.RealScalar(sqrt(kalman.measurement_noise_cov[0, 0])))
 | 
						|
 | 
						|
            # generate measurement
 | 
						|
            cv.MatMulAdd(kalman.measurement_matrix, state, measurement, measurement)
 | 
						|
 | 
						|
            measurement_angle = measurement[0, 0]
 | 
						|
            measurement_pt = calc_point(measurement_angle)
 | 
						|
 | 
						|
            # plot points
 | 
						|
            def draw_cross(center, color, d):
 | 
						|
                cv.Line(img, (center[0] - d, center[1] - d),
 | 
						|
                             (center[0] + d, center[1] + d), color, 1, cv.CV_AA, 0)
 | 
						|
                cv.Line(img, (center[0] + d, center[1] - d),
 | 
						|
                             (center[0] - d, center[1] + d), color, 1, cv.CV_AA, 0)
 | 
						|
 | 
						|
            cv.Zero(img)
 | 
						|
            draw_cross(state_pt, cv.CV_RGB(255, 255, 255), 3)
 | 
						|
            draw_cross(measurement_pt, cv.CV_RGB(255, 0,0), 3)
 | 
						|
            draw_cross(predict_pt, cv.CV_RGB(0, 255, 0), 3)
 | 
						|
            cv.Line(img, state_pt, measurement_pt, cv.CV_RGB(255, 0,0), 3, cv. CV_AA, 0)
 | 
						|
            cv.Line(img, state_pt, predict_pt, cv.CV_RGB(255, 255, 0), 3, cv. CV_AA, 0)
 | 
						|
 | 
						|
            cv.KalmanCorrect(kalman, measurement)
 | 
						|
 | 
						|
            cv.RandArr(rng, process_noise, cv.CV_RAND_NORMAL, cv.RealScalar(0),
 | 
						|
                       cv.RealScalar(sqrt(kalman.process_noise_cov[0, 0])))
 | 
						|
            cv.MatMulAdd(kalman.transition_matrix, state, process_noise, state)
 | 
						|
 | 
						|
            cv.ShowImage("Kalman", img)
 | 
						|
 | 
						|
            code = cv.WaitKey(100) % 0x100
 | 
						|
            if code != -1:
 | 
						|
                break
 | 
						|
 | 
						|
        if code in [27, ord('q'), ord('Q')]:
 | 
						|
            break
 | 
						|
 | 
						|
    cv.DestroyWindow("Kalman")
 |