Also fixed some typos and code alignment Also adapted tutorial CPP samples Fixed some identation problems
		
			
				
	
	
		
			95 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			95 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "opencv2/legacy/legacy.hpp"
 | 
						|
#include "opencv2/highgui/highgui.hpp"
 | 
						|
 | 
						|
using namespace cv;
 | 
						|
 | 
						|
int main( int /*argc*/, char** /*argv*/ )
 | 
						|
{
 | 
						|
    const int N = 4;
 | 
						|
    const int N1 = (int)sqrt((double)N);
 | 
						|
    const Scalar colors[] =
 | 
						|
    {
 | 
						|
        Scalar(0,0,255), Scalar(0,255,0),
 | 
						|
        Scalar(0,255,255),Scalar(255,255,0)
 | 
						|
    };
 | 
						|
 | 
						|
    int i, j;
 | 
						|
    int nsamples = 100;
 | 
						|
    Mat samples( nsamples, 2, CV_32FC1 );
 | 
						|
    Mat labels;
 | 
						|
    Mat img = Mat::zeros( Size( 500, 500 ), CV_8UC3 );
 | 
						|
    Mat sample( 1, 2, CV_32FC1 );
 | 
						|
    CvEM em_model;
 | 
						|
    CvEMParams params;
 | 
						|
 | 
						|
    samples = samples.reshape(2, 0);
 | 
						|
    for( i = 0; i < N; i++ )
 | 
						|
    {
 | 
						|
        // form the training samples
 | 
						|
        Mat samples_part = samples.rowRange(i*nsamples/N, (i+1)*nsamples/N );
 | 
						|
 | 
						|
        Scalar mean(((i%N1)+1)*img.rows/(N1+1),
 | 
						|
                    ((i/N1)+1)*img.rows/(N1+1));
 | 
						|
        Scalar sigma(30,30);
 | 
						|
        randn( samples_part, mean, sigma );
 | 
						|
    }
 | 
						|
    samples = samples.reshape(1, 0);
 | 
						|
 | 
						|
    // initialize model parameters
 | 
						|
    params.covs      = NULL;
 | 
						|
    params.means     = NULL;
 | 
						|
    params.weights   = NULL;
 | 
						|
    params.probs     = NULL;
 | 
						|
    params.nclusters = N;
 | 
						|
    params.cov_mat_type       = CvEM::COV_MAT_SPHERICAL;
 | 
						|
    params.start_step         = CvEM::START_AUTO_STEP;
 | 
						|
    params.term_crit.max_iter = 300;
 | 
						|
    params.term_crit.epsilon  = 0.1;
 | 
						|
    params.term_crit.type     = CV_TERMCRIT_ITER|CV_TERMCRIT_EPS;
 | 
						|
 | 
						|
    // cluster the data
 | 
						|
    em_model.train( samples, Mat(), params, &labels );
 | 
						|
 | 
						|
#if 0
 | 
						|
    // the piece of code shows how to repeatedly optimize the model
 | 
						|
    // with less-constrained parameters
 | 
						|
    //(COV_MAT_DIAGONAL instead of COV_MAT_SPHERICAL)
 | 
						|
    // when the output of the first stage is used as input for the second one.
 | 
						|
    CvEM em_model2;
 | 
						|
    params.cov_mat_type = CvEM::COV_MAT_DIAGONAL;
 | 
						|
    params.start_step = CvEM::START_E_STEP;
 | 
						|
    params.means = em_model.get_means();
 | 
						|
    params.covs = em_model.get_covs();
 | 
						|
    params.weights = em_model.get_weights();
 | 
						|
 | 
						|
    em_model2.train( samples, Mat(), params, &labels );
 | 
						|
    // to use em_model2, replace em_model.predict()
 | 
						|
    // with em_model2.predict() below
 | 
						|
#endif
 | 
						|
    // classify every image pixel
 | 
						|
    for( i = 0; i < img.rows; i++ )
 | 
						|
    {
 | 
						|
        for( j = 0; j < img.cols; j++ )
 | 
						|
        {
 | 
						|
            sample.at<float>(0) = (float)j;
 | 
						|
            sample.at<float>(1) = (float)i;
 | 
						|
            int response = cvRound(em_model.predict( sample ));
 | 
						|
            Scalar c = colors[response];
 | 
						|
 | 
						|
            circle( img, Point(j, i), 1, c*0.75, CV_FILLED );
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    //draw the clustered samples
 | 
						|
    for( i = 0; i < nsamples; i++ )
 | 
						|
    {
 | 
						|
        Point pt(cvRound(samples.at<float>(i, 0)), cvRound(samples.at<float>(i, 1)));
 | 
						|
        circle( img, pt, 1, colors[labels.at<int>(i)], CV_FILLED );
 | 
						|
    }
 | 
						|
 | 
						|
    imshow( "EM-clustering result", img );
 | 
						|
    waitKey(0);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |