 8a4a1bb018
			
		
	
	8a4a1bb018
	
	
	
		
			
			1. someMatrix.data -> someMatrix.prt() 2. someMatrix.data + someMatrix.step * lineIndex -> someMatrix.ptr( lineIndex ) 3. (SomeType*) someMatrix.data -> someMatrix.ptr<SomeType>() 4. someMatrix.data -> !someMatrix.empty() ( or !someMatrix.data -> someMatrix.empty() ) in logical expressions
		
			
				
	
	
		
			368 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			368 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "test_precomp.hpp"
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| class Core_RandTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     Core_RandTest();
 | |
| protected:
 | |
|     void run(int);
 | |
|     bool check_pdf(const Mat& hist, double scale, int dist_type,
 | |
|                    double& refval, double& realval);
 | |
| };
 | |
| 
 | |
| 
 | |
| Core_RandTest::Core_RandTest()
 | |
| {
 | |
| }
 | |
| 
 | |
| static double chi2_p95(int n)
 | |
| {
 | |
|     static float chi2_tab95[] = {
 | |
|         3.841f, 5.991f, 7.815f, 9.488f, 11.07f, 12.59f, 14.07f, 15.51f,
 | |
|         16.92f, 18.31f, 19.68f, 21.03f, 21.03f, 22.36f, 23.69f, 25.00f,
 | |
|         26.30f, 27.59f, 28.87f, 30.14f, 31.41f, 32.67f, 33.92f, 35.17f,
 | |
|         36.42f, 37.65f, 38.89f, 40.11f, 41.34f, 42.56f, 43.77f };
 | |
|     static const double xp = 1.64;
 | |
|     CV_Assert(n >= 1);
 | |
| 
 | |
|     if( n <= 30 )
 | |
|         return chi2_tab95[n-1];
 | |
|     return n + sqrt((double)2*n)*xp + 0.6666666666666*(xp*xp - 1);
 | |
| }
 | |
| 
 | |
| bool Core_RandTest::check_pdf(const Mat& hist, double scale,
 | |
|                             int dist_type, double& refval, double& realval)
 | |
| {
 | |
|     Mat hist0(hist.size(), CV_32F);
 | |
|     const int* H = hist.ptr<int>();
 | |
|     float* H0 = hist0.ptr<float>();
 | |
|     int i, hsz = hist.cols;
 | |
| 
 | |
|     double sum = 0;
 | |
|     for( i = 0; i < hsz; i++ )
 | |
|         sum += H[i];
 | |
|     CV_Assert( fabs(1./sum - scale) < FLT_EPSILON );
 | |
| 
 | |
|     if( dist_type == CV_RAND_UNI )
 | |
|     {
 | |
|         float scale0 = (float)(1./hsz);
 | |
|         for( i = 0; i < hsz; i++ )
 | |
|             H0[i] = scale0;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         double sum2 = 0, r = (hsz-1.)/2;
 | |
|         double alpha = 2*sqrt(2.)/r, beta = -alpha*r;
 | |
|         for( i = 0; i < hsz; i++ )
 | |
|         {
 | |
|             double x = i*alpha + beta;
 | |
|             H0[i] = (float)exp(-x*x);
 | |
|             sum2 += H0[i];
 | |
|         }
 | |
|         sum2 = 1./sum2;
 | |
|         for( i = 0; i < hsz; i++ )
 | |
|             H0[i] = (float)(H0[i]*sum2);
 | |
|     }
 | |
| 
 | |
|     double chi2 = 0;
 | |
|     for( i = 0; i < hsz; i++ )
 | |
|     {
 | |
|         double a = H0[i];
 | |
|         double b = H[i]*scale;
 | |
|         if( a > DBL_EPSILON )
 | |
|             chi2 += (a - b)*(a - b)/(a + b);
 | |
|     }
 | |
|     realval = chi2;
 | |
| 
 | |
|     double chi2_pval = chi2_p95(hsz - 1 - (dist_type == CV_RAND_NORMAL ? 2 : 0));
 | |
|     refval = chi2_pval*0.01;
 | |
|     return realval <= refval;
 | |
| }
 | |
| 
 | |
| void Core_RandTest::run( int )
 | |
| {
 | |
|     static int _ranges[][2] =
 | |
|     {{ 0, 256 }, { -128, 128 }, { 0, 65536 }, { -32768, 32768 },
 | |
|         { -1000000, 1000000 }, { -1000, 1000 }, { -1000, 1000 }};
 | |
| 
 | |
|     const int MAX_SDIM = 10;
 | |
|     const int N = 2000000;
 | |
|     const int maxSlice = 1000;
 | |
|     const int MAX_HIST_SIZE = 1000;
 | |
|     int progress = 0;
 | |
| 
 | |
|     RNG& rng = ts->get_rng();
 | |
|     RNG tested_rng = theRNG();
 | |
|     test_case_count = 200;
 | |
| 
 | |
|     for( int idx = 0; idx < test_case_count; idx++ )
 | |
|     {
 | |
|         progress = update_progress( progress, idx, test_case_count, 0 );
 | |
|         ts->update_context( this, idx, false );
 | |
| 
 | |
|         int depth = cvtest::randInt(rng) % (CV_64F+1);
 | |
|         int c, cn = (cvtest::randInt(rng) % 4) + 1;
 | |
|         int type = CV_MAKETYPE(depth, cn);
 | |
|         int dist_type = cvtest::randInt(rng) % (CV_RAND_NORMAL+1);
 | |
|         int i, k, SZ = N/cn;
 | |
|         Scalar A, B;
 | |
| 
 | |
|         double eps = 1.e-4;
 | |
|         if (depth == CV_64F)
 | |
|             eps = 1.e-7;
 | |
| 
 | |
|         bool do_sphere_test = dist_type == CV_RAND_UNI;
 | |
|         Mat arr[2], hist[4];
 | |
|         int W[] = {0,0,0,0};
 | |
| 
 | |
|         arr[0].create(1, SZ, type);
 | |
|         arr[1].create(1, SZ, type);
 | |
|         bool fast_algo = dist_type == CV_RAND_UNI && depth < CV_32F;
 | |
| 
 | |
|         for( c = 0; c < cn; c++ )
 | |
|         {
 | |
|             int a, b, hsz;
 | |
|             if( dist_type == CV_RAND_UNI )
 | |
|             {
 | |
|                 a = (int)(cvtest::randInt(rng) % (_ranges[depth][1] -
 | |
|                                               _ranges[depth][0])) + _ranges[depth][0];
 | |
|                 do
 | |
|                 {
 | |
|                     b = (int)(cvtest::randInt(rng) % (_ranges[depth][1] -
 | |
|                                                   _ranges[depth][0])) + _ranges[depth][0];
 | |
|                 }
 | |
|                 while( abs(a-b) <= 1 );
 | |
|                 if( a > b )
 | |
|                     std::swap(a, b);
 | |
| 
 | |
|                 unsigned r = (unsigned)(b - a);
 | |
|                 fast_algo = fast_algo && r <= 256 && (r & (r-1)) == 0;
 | |
|                 hsz = min((unsigned)(b - a), (unsigned)MAX_HIST_SIZE);
 | |
|                 do_sphere_test = do_sphere_test && b - a >= 100;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 int vrange = _ranges[depth][1] - _ranges[depth][0];
 | |
|                 int meanrange = vrange/16;
 | |
|                 int mindiv = MAX(vrange/20, 5);
 | |
|                 int maxdiv = MIN(vrange/8, 10000);
 | |
| 
 | |
|                 a = cvtest::randInt(rng) % meanrange - meanrange/2 +
 | |
|                 (_ranges[depth][0] + _ranges[depth][1])/2;
 | |
|                 b = cvtest::randInt(rng) % (maxdiv - mindiv) + mindiv;
 | |
|                 hsz = min((unsigned)b*9, (unsigned)MAX_HIST_SIZE);
 | |
|             }
 | |
|             A[c] = a;
 | |
|             B[c] = b;
 | |
|             hist[c].create(1, hsz, CV_32S);
 | |
|         }
 | |
| 
 | |
|         cv::RNG saved_rng = tested_rng;
 | |
|         int maxk = fast_algo ? 0 : 1;
 | |
|         for( k = 0; k <= maxk; k++ )
 | |
|         {
 | |
|             tested_rng = saved_rng;
 | |
|             int sz = 0, dsz = 0, slice;
 | |
|             for( slice = 0; slice < maxSlice; slice++, sz += dsz )
 | |
|             {
 | |
|                 dsz = slice+1 < maxSlice ? (int)(cvtest::randInt(rng) % (SZ - sz + 1)) : SZ - sz;
 | |
|                 Mat aslice = arr[k].colRange(sz, sz + dsz);
 | |
|                 tested_rng.fill(aslice, dist_type, A, B);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if( maxk >= 1 && cvtest::norm(arr[0], arr[1], NORM_INF) > eps)
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "RNG output depends on the array lengths (some generated numbers get lost?)" );
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         for( c = 0; c < cn; c++ )
 | |
|         {
 | |
|             const uchar* data = arr[0].ptr();
 | |
|             int* H = hist[c].ptr<int>();
 | |
|             int HSZ = hist[c].cols;
 | |
|             double minVal = dist_type == CV_RAND_UNI ? A[c] : A[c] - B[c]*4;
 | |
|             double maxVal = dist_type == CV_RAND_UNI ? B[c] : A[c] + B[c]*4;
 | |
|             double scale = HSZ/(maxVal - minVal);
 | |
|             double delta = -minVal*scale;
 | |
| 
 | |
|             hist[c] = Scalar::all(0);
 | |
| 
 | |
|             for( i = c; i < SZ*cn; i += cn )
 | |
|             {
 | |
|                 double val = depth == CV_8U ? ((const uchar*)data)[i] :
 | |
|                 depth == CV_8S ? ((const schar*)data)[i] :
 | |
|                 depth == CV_16U ? ((const ushort*)data)[i] :
 | |
|                 depth == CV_16S ? ((const short*)data)[i] :
 | |
|                 depth == CV_32S ? ((const int*)data)[i] :
 | |
|                 depth == CV_32F ? ((const float*)data)[i] :
 | |
|                 ((const double*)data)[i];
 | |
|                 int ival = cvFloor(val*scale + delta);
 | |
|                 if( (unsigned)ival < (unsigned)HSZ )
 | |
|                 {
 | |
|                     H[ival]++;
 | |
|                     W[c]++;
 | |
|                 }
 | |
|                 else if( dist_type == CV_RAND_UNI )
 | |
|                 {
 | |
|                     if( (minVal <= val && val < maxVal) || (depth >= CV_32F && val == maxVal) )
 | |
|                     {
 | |
|                         H[ival < 0 ? 0 : HSZ-1]++;
 | |
|                         W[c]++;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         putchar('^');
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if( dist_type == CV_RAND_UNI && W[c] != SZ )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "Uniform RNG gave values out of the range [%g,%g) on channel %d/%d\n",
 | |
|                            A[c], B[c], c, cn);
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|                 return;
 | |
|             }
 | |
|             if( dist_type == CV_RAND_NORMAL && W[c] < SZ*.90)
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "Normal RNG gave too many values out of the range (%g+4*%g,%g+4*%g) on channel %d/%d\n",
 | |
|                            A[c], B[c], A[c], B[c], c, cn);
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|                 return;
 | |
|             }
 | |
|             double refval = 0, realval = 0;
 | |
| 
 | |
|             if( !check_pdf(hist[c], 1./W[c], dist_type, refval, realval) )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "RNG failed Chi-square test "
 | |
|                            "(got %g vs probable maximum %g) on channel %d/%d\n",
 | |
|                            realval, refval, c, cn);
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Monte-Carlo test. Compute volume of SDIM-dimensional sphere
 | |
|         // inscribed in [-1,1]^SDIM cube.
 | |
|         if( do_sphere_test )
 | |
|         {
 | |
|             int SDIM = cvtest::randInt(rng) % (MAX_SDIM-1) + 2;
 | |
|             int N0 = (SZ*cn/SDIM), n = 0;
 | |
|             double r2 = 0;
 | |
|             const uchar* data = arr[0].ptr();
 | |
|             double scale[4], delta[4];
 | |
|             for( c = 0; c < cn; c++ )
 | |
|             {
 | |
|                 scale[c] = 2./(B[c] - A[c]);
 | |
|                 delta[c] = -A[c]*scale[c] - 1;
 | |
|             }
 | |
| 
 | |
|             for( i = k = c = 0; i <= SZ*cn - SDIM; i++, k++, c++ )
 | |
|             {
 | |
|                 double val = depth == CV_8U ? ((const uchar*)data)[i] :
 | |
|                 depth == CV_8S ? ((const schar*)data)[i] :
 | |
|                 depth == CV_16U ? ((const ushort*)data)[i] :
 | |
|                 depth == CV_16S ? ((const short*)data)[i] :
 | |
|                 depth == CV_32S ? ((const int*)data)[i] :
 | |
|                 depth == CV_32F ? ((const float*)data)[i] : ((const double*)data)[i];
 | |
|                 c &= c < cn ? -1 : 0;
 | |
|                 val = val*scale[c] + delta[c];
 | |
|                 r2 += val*val;
 | |
|                 if( k == SDIM-1 )
 | |
|                 {
 | |
|                     n += r2 <= 1;
 | |
|                     r2 = 0;
 | |
|                     k = -1;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             double V = ((double)n/N0)*(1 << SDIM);
 | |
| 
 | |
|             // the theoretically computed volume
 | |
|             int sdim = SDIM % 2;
 | |
|             double V0 = sdim + 1;
 | |
|             for( sdim += 2; sdim <= SDIM; sdim += 2 )
 | |
|                 V0 *= 2*CV_PI/sdim;
 | |
| 
 | |
|             if( fabs(V - V0) > 0.3*fabs(V0) )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "RNG failed %d-dim sphere volume test (got %g instead of %g)\n",
 | |
|                            SDIM, V, V0);
 | |
|                 ts->printf( cvtest::TS::LOG, "depth = %d, N0 = %d\n", depth, N0);
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| TEST(Core_Rand, quality) { Core_RandTest test; test.safe_run(); }
 | |
| 
 | |
| 
 | |
| class Core_RandRangeTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     Core_RandRangeTest() {}
 | |
|     ~Core_RandRangeTest() {}
 | |
| protected:
 | |
|     void run(int)
 | |
|     {
 | |
|         Mat a(Size(1280, 720), CV_8U, Scalar(20));
 | |
|         Mat af(Size(1280, 720), CV_32F, Scalar(20));
 | |
|         theRNG().fill(a, RNG::UNIFORM, -DBL_MAX, DBL_MAX);
 | |
|         theRNG().fill(af, RNG::UNIFORM, -DBL_MAX, DBL_MAX);
 | |
|         int n0 = 0, n255 = 0, nx = 0;
 | |
|         int nfmin = 0, nfmax = 0, nfx = 0;
 | |
| 
 | |
|         for( int i = 0; i < a.rows; i++ )
 | |
|             for( int j = 0; j < a.cols; j++ )
 | |
|             {
 | |
|                 int v = a.at<uchar>(i,j);
 | |
|                 double vf = af.at<float>(i,j);
 | |
|                 if( v == 0 ) n0++;
 | |
|                 else if( v == 255 ) n255++;
 | |
|                 else nx++;
 | |
|                 if( vf < FLT_MAX*-0.999f ) nfmin++;
 | |
|                 else if( vf > FLT_MAX*0.999f ) nfmax++;
 | |
|                 else nfx++;
 | |
|             }
 | |
|         CV_Assert( n0 > nx*2 && n255 > nx*2 );
 | |
|         CV_Assert( nfmin > nfx*2 && nfmax > nfx*2 );
 | |
|     }
 | |
| };
 | |
| 
 | |
| TEST(Core_Rand, range) { Core_RandRangeTest test; test.safe_run(); }
 | |
| 
 | |
| 
 | |
| TEST(Core_RNG_MT19937, regression)
 | |
| {
 | |
|     cv::RNG_MT19937 rng;
 | |
|     int actual[61] = {0, };
 | |
|     const size_t length = (sizeof(actual) / sizeof(actual[0]));
 | |
|     for (int i = 0; i < 10000; ++i )
 | |
|     {
 | |
|         actual[(unsigned)(rng.next() ^ i) % length]++;
 | |
|     }
 | |
| 
 | |
|     int expected[length] = {
 | |
|         177, 158, 180, 177,  160, 179, 143, 162,
 | |
|         177, 144, 170, 174,  165, 168, 168, 156,
 | |
|         177, 157, 159, 169,  177, 182, 166, 154,
 | |
|         144, 180, 168, 152,  170, 187, 160, 145,
 | |
|         139, 164, 157, 179,  148, 183, 159, 160,
 | |
|         196, 184, 149, 142,  162, 148, 163, 152,
 | |
|         168, 173, 160, 181,  172, 181, 155, 153,
 | |
|         158, 171, 138, 150,  150 };
 | |
| 
 | |
|     for (size_t i = 0; i < length; ++i)
 | |
|     {
 | |
|         ASSERT_EQ(expected[i], actual[i]);
 | |
|     }
 | |
| }
 |