312 lines
13 KiB
C++
312 lines
13 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other GpuMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
using namespace std;
|
|
|
|
#if !defined (HAVE_CUDA)
|
|
|
|
void cv::gpu::StereoConstantSpaceBP::estimateRecommendedParams(int, int, int&, int&, int&, int&) { throw_nogpu(); }
|
|
|
|
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int, int, int, int, int) { throw_nogpu(); }
|
|
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int, int, int, int, float, float, float, float, int, int) { throw_nogpu(); }
|
|
|
|
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
|
|
|
|
#else /* !defined (HAVE_CUDA) */
|
|
|
|
namespace cv { namespace gpu { namespace device
|
|
{
|
|
namespace stereocsbp
|
|
{
|
|
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int min_disp_th,
|
|
const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& temp);
|
|
|
|
template<class T>
|
|
void init_data_cost(int rows, int cols, T* disp_selected_pyr, T* data_cost_selected, size_t msg_step,
|
|
int h, int w, int level, int nr_plane, int ndisp, int channels, bool use_local_init_data_cost, cudaStream_t stream);
|
|
|
|
template<class T>
|
|
void compute_data_cost(const T* disp_selected_pyr, T* data_cost, size_t msg_step,
|
|
int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, cudaStream_t stream);
|
|
|
|
template<class T>
|
|
void init_message(T* u_new, T* d_new, T* l_new, T* r_new,
|
|
const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur,
|
|
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur,
|
|
T* data_cost_selected, const T* data_cost, size_t msg_step,
|
|
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream);
|
|
|
|
template<class T>
|
|
void calc_all_iterations(T* u, T* d, T* l, T* r, const T* data_cost_selected,
|
|
const T* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream);
|
|
|
|
template<class T>
|
|
void compute_disp(const T* u, const T* d, const T* l, const T* r, const T* data_cost_selected, const T* disp_selected, size_t msg_step,
|
|
const DevMem2D_<short>& disp, int nr_plane, cudaStream_t stream);
|
|
}
|
|
}}}
|
|
|
|
using namespace ::cv::gpu::device::stereocsbp;
|
|
|
|
namespace
|
|
{
|
|
const float DEFAULT_MAX_DATA_TERM = 30.0f;
|
|
const float DEFAULT_DATA_WEIGHT = 1.0f;
|
|
const float DEFAULT_MAX_DISC_TERM = 160.0f;
|
|
const float DEFAULT_DISC_SINGLE_JUMP = 10.0f;
|
|
}
|
|
|
|
void cv::gpu::StereoConstantSpaceBP::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane)
|
|
{
|
|
ndisp = (int) ((float) width / 3.14f);
|
|
if ((ndisp & 1) != 0)
|
|
ndisp++;
|
|
|
|
int mm = ::max(width, height);
|
|
iters = mm / 100 + ((mm > 1200)? - 4 : 4);
|
|
|
|
levels = (int)::log(static_cast<double>(mm)) * 2 / 3;
|
|
if (levels == 0) levels++;
|
|
|
|
nr_plane = (int) ((float) ndisp / std::pow(2.0, levels + 1));
|
|
}
|
|
|
|
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, int levels_, int nr_plane_,
|
|
int msg_type_)
|
|
|
|
: ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_),
|
|
max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT),
|
|
max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP), min_disp_th(0),
|
|
msg_type(msg_type_), use_local_init_data_cost(true)
|
|
{
|
|
CV_Assert(msg_type_ == CV_32F || msg_type_ == CV_16S);
|
|
}
|
|
|
|
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, int levels_, int nr_plane_,
|
|
float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_,
|
|
int min_disp_th_, int msg_type_)
|
|
: ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_),
|
|
max_data_term(max_data_term_), data_weight(data_weight_),
|
|
max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_), min_disp_th(min_disp_th_),
|
|
msg_type(msg_type_), use_local_init_data_cost(true)
|
|
{
|
|
CV_Assert(msg_type_ == CV_32F || msg_type_ == CV_16S);
|
|
}
|
|
|
|
template<class T>
|
|
static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat& mbuf, GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
|
|
{
|
|
CV_DbgAssert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels && 0 < rthis.nr_plane
|
|
&& left.rows == right.rows && left.cols == right.cols && left.type() == right.type());
|
|
|
|
CV_Assert(rthis.levels <= 8 && (left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4));
|
|
|
|
const Scalar zero = Scalar::all(0);
|
|
|
|
cudaStream_t cudaStream = StreamAccessor::getStream(stream);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
|
// Init
|
|
|
|
int rows = left.rows;
|
|
int cols = left.cols;
|
|
|
|
rthis.levels = min(rthis.levels, int(log((double)rthis.ndisp) / log(2.0)));
|
|
int levels = rthis.levels;
|
|
|
|
// compute sizes
|
|
AutoBuffer<int> buf(levels * 3);
|
|
int* cols_pyr = buf;
|
|
int* rows_pyr = cols_pyr + levels;
|
|
int* nr_plane_pyr = rows_pyr + levels;
|
|
|
|
cols_pyr[0] = cols;
|
|
rows_pyr[0] = rows;
|
|
nr_plane_pyr[0] = rthis.nr_plane;
|
|
|
|
for (int i = 1; i < levels; i++)
|
|
{
|
|
cols_pyr[i] = cols_pyr[i-1] / 2;
|
|
rows_pyr[i] = rows_pyr[i-1] / 2;
|
|
nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2;
|
|
}
|
|
|
|
|
|
GpuMat u[2], d[2], l[2], r[2], disp_selected_pyr[2], data_cost, data_cost_selected;
|
|
|
|
|
|
//allocate buffers
|
|
int buffers_count = 10; // (up + down + left + right + disp_selected_pyr) * 2
|
|
buffers_count += 2; // data_cost has twice more rows than other buffers, what's why +2, not +1;
|
|
buffers_count += 1; // data_cost_selected
|
|
mbuf.create(rows * rthis.nr_plane * buffers_count, cols, DataType<T>::type);
|
|
|
|
data_cost = mbuf.rowRange(0, rows * rthis.nr_plane * 2);
|
|
data_cost_selected = mbuf.rowRange(data_cost.rows, data_cost.rows + rows * rthis.nr_plane);
|
|
|
|
for(int k = 0; k < 2; ++k) // in/out
|
|
{
|
|
GpuMat sub1 = mbuf.rowRange(data_cost.rows + data_cost_selected.rows, mbuf.rows);
|
|
GpuMat sub2 = sub1.rowRange((k+0)*sub1.rows/2, (k+1)*sub1.rows/2);
|
|
|
|
GpuMat *buf_ptrs[] = { &u[k], &d[k], &l[k], &r[k], &disp_selected_pyr[k] };
|
|
for(int r = 0; r < 5; ++r)
|
|
{
|
|
*buf_ptrs[r] = sub2.rowRange(r * sub2.rows/5, (r+1) * sub2.rows/5);
|
|
assert(buf_ptrs[r]->cols == cols && buf_ptrs[r]->rows == rows * rthis.nr_plane);
|
|
}
|
|
};
|
|
|
|
size_t elem_step = mbuf.step / sizeof(T);
|
|
|
|
Size temp_size = data_cost.size();
|
|
if ((size_t)temp_size.area() < elem_step * rows_pyr[levels - 1] * rthis.ndisp)
|
|
temp_size = Size(static_cast<int>(elem_step), rows_pyr[levels - 1] * rthis.ndisp);
|
|
|
|
temp.create(temp_size, DataType<T>::type);
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
// Compute
|
|
|
|
load_constants(rthis.ndisp, rthis.max_data_term, rthis.data_weight, rthis.max_disc_term, rthis.disc_single_jump, rthis.min_disp_th, left, right, temp);
|
|
|
|
if (stream)
|
|
{
|
|
stream.enqueueMemSet(l[0], zero);
|
|
stream.enqueueMemSet(d[0], zero);
|
|
stream.enqueueMemSet(r[0], zero);
|
|
stream.enqueueMemSet(u[0], zero);
|
|
|
|
stream.enqueueMemSet(l[1], zero);
|
|
stream.enqueueMemSet(d[1], zero);
|
|
stream.enqueueMemSet(r[1], zero);
|
|
stream.enqueueMemSet(u[1], zero);
|
|
|
|
stream.enqueueMemSet(data_cost, zero);
|
|
stream.enqueueMemSet(data_cost_selected, zero);
|
|
}
|
|
else
|
|
{
|
|
l[0].setTo(zero);
|
|
d[0].setTo(zero);
|
|
r[0].setTo(zero);
|
|
u[0].setTo(zero);
|
|
|
|
l[1].setTo(zero);
|
|
d[1].setTo(zero);
|
|
r[1].setTo(zero);
|
|
u[1].setTo(zero);
|
|
|
|
data_cost.setTo(zero);
|
|
data_cost_selected.setTo(zero);
|
|
}
|
|
|
|
int cur_idx = 0;
|
|
|
|
for (int i = levels - 1; i >= 0; i--)
|
|
{
|
|
if (i == levels - 1)
|
|
{
|
|
init_data_cost(left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<T>(), data_cost_selected.ptr<T>(),
|
|
elem_step, rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], rthis.ndisp, left.channels(), rthis.use_local_init_data_cost, cudaStream);
|
|
}
|
|
else
|
|
{
|
|
compute_data_cost(disp_selected_pyr[cur_idx].ptr<T>(), data_cost.ptr<T>(), elem_step,
|
|
left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), cudaStream);
|
|
|
|
int new_idx = (cur_idx + 1) & 1;
|
|
|
|
init_message(u[new_idx].ptr<T>(), d[new_idx].ptr<T>(), l[new_idx].ptr<T>(), r[new_idx].ptr<T>(),
|
|
u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
|
|
disp_selected_pyr[new_idx].ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(),
|
|
data_cost_selected.ptr<T>(), data_cost.ptr<T>(), elem_step, rows_pyr[i],
|
|
cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], cudaStream);
|
|
|
|
cur_idx = new_idx;
|
|
}
|
|
|
|
calc_all_iterations(u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
|
|
data_cost_selected.ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), elem_step,
|
|
rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], rthis.iters, cudaStream);
|
|
}
|
|
|
|
if (disp.empty())
|
|
disp.create(rows, cols, CV_16S);
|
|
|
|
out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out));
|
|
|
|
if (stream)
|
|
stream.enqueueMemSet(out, zero);
|
|
else
|
|
out.setTo(zero);
|
|
|
|
compute_disp(u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
|
|
data_cost_selected.ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), elem_step, out, nr_plane_pyr[0], cudaStream);
|
|
|
|
if (disp.type() != CV_16S)
|
|
{
|
|
if (stream)
|
|
stream.enqueueConvert(out, disp, disp.type());
|
|
else
|
|
out.convertTo(disp, disp.type());
|
|
}
|
|
}
|
|
|
|
|
|
typedef void (*csbp_operator_t)(StereoConstantSpaceBP& rthis, GpuMat& mbuf,
|
|
GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream);
|
|
|
|
const static csbp_operator_t operators[] = {0, 0, 0, csbp_operator<short>, 0, csbp_operator<float>, 0, 0};
|
|
|
|
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
|
|
{
|
|
CV_Assert(msg_type == CV_32F || msg_type == CV_16S);
|
|
operators[msg_type](*this, messages_buffers, temp, out, left, right, disp, stream);
|
|
}
|
|
|
|
#endif /* !defined (HAVE_CUDA) */
|