opencv/modules/contrib/src/facerec.cpp

858 lines
32 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
* Released to public domain under terms of the BSD Simplified license.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the organization nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* See <http://www.opensource.org/licenses/bsd-license>
*/
#include "precomp.hpp"
#include <set>
namespace cv
{
using std::set;
// Reads a sequence from a FileNode::SEQ with type _Tp into a result vector.
template<typename _Tp>
inline void readFileNodeList(const FileNode& fn, vector<_Tp>& result) {
if (fn.type() == FileNode::SEQ) {
for (FileNodeIterator it = fn.begin(); it != fn.end();) {
_Tp item;
it >> item;
result.push_back(item);
}
}
}
// Writes the a list of given items to a cv::FileStorage.
template<typename _Tp>
inline void writeFileNodeList(FileStorage& fs, const string& name,
const vector<_Tp>& items) {
// typedefs
typedef typename vector<_Tp>::const_iterator constVecIterator;
// write the elements in item to fs
fs << name << "[";
for (constVecIterator it = items.begin(); it != items.end(); ++it) {
fs << *it;
}
fs << "]";
}
static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double beta=0) {
// make sure the input data is a vector of matrices or vector of vector
if(src.kind() != _InputArray::STD_VECTOR_MAT && src.kind() != _InputArray::STD_VECTOR_VECTOR) {
string error_message = "The data is expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< vector<...> >).";
CV_Error(CV_StsBadArg, error_message);
}
// number of samples
size_t n = src.total();
// return empty matrix if no matrices given
if(n == 0)
return Mat();
// dimensionality of (reshaped) samples
size_t d = src.getMat(0).total();
// create data matrix
Mat data((int)n, (int)d, rtype);
// now copy data
for(unsigned int i = 0; i < n; i++) {
// make sure data can be reshaped, throw exception if not!
if(src.getMat(i).total() != d) {
string error_message = format("Wrong number of elements in matrix #%d! Expected %d was %d.", i, d, src.getMat(i).total());
CV_Error(CV_StsBadArg, error_message);
}
// get a hold of the current row
Mat xi = data.row(i);
// make reshape happy by cloning for non-continuous matrices
if(src.getMat(i).isContinuous()) {
src.getMat(i).reshape(1, 1).convertTo(xi, rtype, alpha, beta);
} else {
src.getMat(i).clone().reshape(1, 1).convertTo(xi, rtype, alpha, beta);
}
}
return data;
}
// Removes duplicate elements in a given vector.
template<typename _Tp>
inline vector<_Tp> remove_dups(const vector<_Tp>& src) {
typedef typename set<_Tp>::const_iterator constSetIterator;
typedef typename vector<_Tp>::const_iterator constVecIterator;
set<_Tp> set_elems;
for (constVecIterator it = src.begin(); it != src.end(); ++it)
set_elems.insert(*it);
vector<_Tp> elems;
for (constSetIterator it = set_elems.begin(); it != set_elems.end(); ++it)
elems.push_back(*it);
return elems;
}
// Turk, M., and Pentland, A. "Eigenfaces for recognition.". Journal of
// Cognitive Neuroscience 3 (1991), 7186.
class Eigenfaces : public FaceRecognizer
{
private:
int _num_components;
double _threshold;
vector<Mat> _projections;
Mat _labels;
Mat _eigenvectors;
Mat _eigenvalues;
Mat _mean;
public:
using FaceRecognizer::save;
using FaceRecognizer::load;
// Initializes an empty Eigenfaces model.
Eigenfaces(int num_components = 0, double threshold = DBL_MAX) :
_num_components(num_components),
_threshold(threshold) {}
// Initializes and computes an Eigenfaces model with images in src and
// corresponding labels in labels. num_components will be kept for
// classification.
Eigenfaces(InputArray src, InputArray labels,
int num_components = 0, double threshold = DBL_MAX) :
_num_components(num_components),
_threshold(threshold) {
train(src, labels);
}
// Computes an Eigenfaces model with images in src and corresponding labels
// in labels.
void train(InputArray src, InputArray labels);
// Predicts the label of a query image in src.
int predict(InputArray src) const;
// Predicts the label and confidence for a given sample.
void predict(InputArray _src, int &label, double &dist) const;
// See FaceRecognizer::load.
void load(const FileStorage& fs);
// See FaceRecognizer::save.
void save(FileStorage& fs) const;
AlgorithmInfo* info() const;
};
// Belhumeur, P. N., Hespanha, J., and Kriegman, D. "Eigenfaces vs. Fisher-
// faces: Recognition using class specific linear projection.". IEEE
// Transactions on Pattern Analysis and Machine Intelligence 19, 7 (1997),
// 711720.
class Fisherfaces: public FaceRecognizer
{
private:
int _num_components;
double _threshold;
Mat _eigenvectors;
Mat _eigenvalues;
Mat _mean;
vector<Mat> _projections;
Mat _labels;
public:
using FaceRecognizer::save;
using FaceRecognizer::load;
// Initializes an empty Fisherfaces model.
Fisherfaces(int num_components = 0, double threshold = DBL_MAX) :
_num_components(num_components),
_threshold(threshold) {}
// Initializes and computes a Fisherfaces model with images in src and
// corresponding labels in labels. num_components will be kept for
// classification.
Fisherfaces(InputArray src, InputArray labels,
int num_components = 0, double threshold = DBL_MAX) :
_num_components(num_components),
_threshold(threshold) {
train(src, labels);
}
~Fisherfaces() {}
// Computes a Fisherfaces model with images in src and corresponding labels
// in labels.
void train(InputArray src, InputArray labels);
// Predicts the label of a query image in src.
int predict(InputArray src) const;
// Predicts the label and confidence for a given sample.
void predict(InputArray _src, int &label, double &dist) const;
// See FaceRecognizer::load.
virtual void load(const FileStorage& fs);
// See FaceRecognizer::save.
virtual void save(FileStorage& fs) const;
AlgorithmInfo* info() const;
};
// Face Recognition based on Local Binary Patterns.
//
// Ahonen T, Hadid A. and Pietikäinen M. "Face description with local binary
// patterns: Application to face recognition." IEEE Transactions on Pattern
// Analysis and Machine Intelligence, 28(12):2037-2041.
//
class LBPH : public FaceRecognizer
{
private:
int _grid_x;
int _grid_y;
int _radius;
int _neighbors;
double _threshold;
vector<Mat> _histograms;
Mat _labels;
public:
using FaceRecognizer::save;
using FaceRecognizer::load;
// Initializes this LBPH Model. The current implementation is rather fixed
// as it uses the Extended Local Binary Patterns per default.
//
// radius, neighbors are used in the local binary patterns creation.
// grid_x, grid_y control the grid size of the spatial histograms.
LBPH(int radius_=1, int neighbors_=8,
int gridx=8, int gridy=8,
double threshold = DBL_MAX) :
_grid_x(gridx),
_grid_y(gridy),
_radius(radius_),
_neighbors(neighbors_),
_threshold(threshold) {}
// Initializes and computes this LBPH Model. The current implementation is
// rather fixed as it uses the Extended Local Binary Patterns per default.
//
// (radius=1), (neighbors=8) are used in the local binary patterns creation.
// (grid_x=8), (grid_y=8) controls the grid size of the spatial histograms.
LBPH(InputArray src,
InputArray labels,
int radius_=1, int neighbors_=8,
int gridx=8, int gridy=8,
double threshold = DBL_MAX) :
_grid_x(gridx),
_grid_y(gridy),
_radius(radius_),
_neighbors(neighbors_),
_threshold(threshold) {
train(src, labels);
}
~LBPH() { }
// Computes a LBPH model with images in src and
// corresponding labels in labels.
void train(InputArray src, InputArray labels);
// Predicts the label of a query image in src.
int predict(InputArray src) const;
// Predicts the label and confidence for a given sample.
void predict(InputArray _src, int &label, double &dist) const;
// See FaceRecognizer::load.
void load(const FileStorage& fs);
// See FaceRecognizer::save.
void save(FileStorage& fs) const;
// Getter functions.
int neighbors() const { return _neighbors; }
int radius() const { return _radius; }
int grid_x() const { return _grid_x; }
int grid_y() const { return _grid_y; }
AlgorithmInfo* info() const;
};
//------------------------------------------------------------------------------
// FaceRecognizer
//------------------------------------------------------------------------------
void FaceRecognizer::save(const string& filename) const {
FileStorage fs(filename, FileStorage::WRITE);
if (!fs.isOpened())
CV_Error(CV_StsError, "File can't be opened for writing!");
this->save(fs);
fs.release();
}
void FaceRecognizer::load(const string& filename) {
FileStorage fs(filename, FileStorage::READ);
if (!fs.isOpened())
CV_Error(CV_StsError, "File can't be opened for writing!");
this->load(fs);
fs.release();
}
//------------------------------------------------------------------------------
// Eigenfaces
//------------------------------------------------------------------------------
void Eigenfaces::train(InputArray _src, InputArray _local_labels) {
if(_src.total() == 0) {
string error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
CV_Error(CV_StsBadArg, error_message);
} else if(_local_labels.getMat().type() != CV_32SC1) {
string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _local_labels.type());
CV_Error(CV_StsBadArg, error_message);
}
// make sure data has correct size
if(_src.total() > 1) {
for(int i = 1; i < static_cast<int>(_src.total()); i++) {
if(_src.getMat(i-1).total() != _src.getMat(i).total()) {
string error_message = format("In the Eigenfaces method all input samples (training images) must be of equal size! Expected %d pixels, but was %d pixels.", _src.getMat(i-1).total(), _src.getMat(i).total());
CV_Error(CV_StsUnsupportedFormat, error_message);
}
}
}
// get labels
Mat labels = _local_labels.getMat();
// observations in row
Mat data = asRowMatrix(_src, CV_64FC1);
// number of samples
int n = data.rows;
// assert there are as much samples as labels
if(static_cast<int>(labels.total()) != n) {
string error_message = format("The number of samples (src) must equal the number of labels (labels)! len(src)=%d, len(labels)=%d.", n, labels.total());
CV_Error(CV_StsBadArg, error_message);
}
// clear existing model data
_labels.release();
_projections.clear();
// clip number of components to be valid
if((_num_components <= 0) || (_num_components > n))
_num_components = n;
// perform the PCA
PCA pca(data, Mat(), CV_PCA_DATA_AS_ROW, _num_components);
// copy the PCA results
_mean = pca.mean.reshape(1,1); // store the mean vector
_eigenvalues = pca.eigenvalues.clone(); // eigenvalues by row
transpose(pca.eigenvectors, _eigenvectors); // eigenvectors by column
// store labels for prediction
labels.copyTo(_labels);
// save projections
for(int sampleIdx = 0; sampleIdx < data.rows; sampleIdx++) {
Mat p = subspaceProject(_eigenvectors, _mean, data.row(sampleIdx));
_projections.push_back(p);
}
}
void Eigenfaces::predict(InputArray _src, int &minClass, double &minDist) const {
// get data
Mat src = _src.getMat();
// make sure the user is passing correct data
if(_projections.empty()) {
// throw error if no data (or simply return -1?)
string error_message = "This Eigenfaces model is not computed yet. Did you call Eigenfaces::train?";
CV_Error(CV_StsError, error_message);
} else if(_eigenvectors.rows != static_cast<int>(src.total())) {
// check data alignment just for clearer exception messages
string error_message = format("Wrong input image size. Reason: Training and Test images must be of equal size! Expected an image with %d elements, but got %d.", _eigenvectors.rows, src.total());
CV_Error(CV_StsBadArg, error_message);
}
// project into PCA subspace
Mat q = subspaceProject(_eigenvectors, _mean, src.reshape(1,1));
minDist = DBL_MAX;
minClass = -1;
for(size_t sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {
double dist = norm(_projections[sampleIdx], q, NORM_L2);
if((dist < minDist) && (dist < _threshold)) {
minDist = dist;
minClass = _labels.at<int>((int)sampleIdx);
}
}
}
int Eigenfaces::predict(InputArray _src) const {
int label;
double dummy;
predict(_src, label, dummy);
return label;
}
void Eigenfaces::load(const FileStorage& fs) {
//read matrices
fs["num_components"] >> _num_components;
fs["mean"] >> _mean;
fs["eigenvalues"] >> _eigenvalues;
fs["eigenvectors"] >> _eigenvectors;
// read sequences
readFileNodeList(fs["projections"], _projections);
fs["labels"] >> _labels;
}
void Eigenfaces::save(FileStorage& fs) const {
// write matrices
fs << "num_components" << _num_components;
fs << "mean" << _mean;
fs << "eigenvalues" << _eigenvalues;
fs << "eigenvectors" << _eigenvectors;
// write sequences
writeFileNodeList(fs, "projections", _projections);
fs << "labels" << _labels;
}
//------------------------------------------------------------------------------
// Fisherfaces
//------------------------------------------------------------------------------
void Fisherfaces::train(InputArray src, InputArray _lbls) {
if(src.total() == 0) {
string error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
CV_Error(CV_StsBadArg, error_message);
} else if(_lbls.getMat().type() != CV_32SC1) {
string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _lbls.type());
CV_Error(CV_StsBadArg, error_message);
}
// make sure data has correct size
if(src.total() > 1) {
for(int i = 1; i < static_cast<int>(src.total()); i++) {
if(src.getMat(i-1).total() != src.getMat(i).total()) {
string error_message = format("In the Fisherfaces method all input samples (training images) must be of equal size! Expected %d pixels, but was %d pixels.", src.getMat(i-1).total(), src.getMat(i).total());
CV_Error(CV_StsUnsupportedFormat, error_message);
}
}
}
// get data
Mat labels = _lbls.getMat();
Mat data = asRowMatrix(src, CV_64FC1);
// number of samples
int N = data.rows;
// make sure labels are passed in correct shape
if(labels.total() != (size_t) N) {
string error_message = format("The number of samples (src) must equal the number of labels (labels)! len(src)=%d, len(labels)=%d.", N, labels.total());
CV_Error(CV_StsBadArg, error_message);
} else if(labels.rows != 1 && labels.cols != 1) {
string error_message = format("Expected the labels in a matrix with one row or column! Given dimensions are rows=%s, cols=%d.", labels.rows, labels.cols);
CV_Error(CV_StsBadArg, error_message);
}
// clear existing model data
_labels.release();
_projections.clear();
// get the number of unique classes (provide a cv::Mat overloaded version?)
vector<int> ll;
labels.copyTo(ll);
int C = (int) remove_dups(ll).size();
// clip number of components to be a valid number
if((_num_components <= 0) || (_num_components > (C-1)))
_num_components = (C-1);
// perform a PCA and keep (N-C) components
PCA pca(data, Mat(), CV_PCA_DATA_AS_ROW, (N-C));
// project the data and perform a LDA on it
LDA lda(pca.project(data),labels, _num_components);
// store the total mean vector
_mean = pca.mean.reshape(1,1);
// store labels
labels.copyTo(_labels);
// store the eigenvalues of the discriminants
lda.eigenvalues().convertTo(_eigenvalues, CV_64FC1);
// Now calculate the projection matrix as pca.eigenvectors * lda.eigenvectors.
// Note: OpenCV stores the eigenvectors by row, so we need to transpose it!
gemm(pca.eigenvectors, lda.eigenvectors(), 1.0, Mat(), 0.0, _eigenvectors, GEMM_1_T);
// store the projections of the original data
for(int sampleIdx = 0; sampleIdx < data.rows; sampleIdx++) {
Mat p = subspaceProject(_eigenvectors, _mean, data.row(sampleIdx));
_projections.push_back(p);
}
}
void Fisherfaces::predict(InputArray _src, int &minClass, double &minDist) const {
Mat src = _src.getMat();
// check data alignment just for clearer exception messages
if(_projections.empty()) {
// throw error if no data (or simply return -1?)
string error_message = "This Fisherfaces model is not computed yet. Did you call Fisherfaces::train?";
CV_Error(CV_StsBadArg, error_message);
} else if(src.total() != (size_t) _eigenvectors.rows) {
string error_message = format("Wrong input image size. Reason: Training and Test images must be of equal size! Expected an image with %d elements, but got %d.", _eigenvectors.rows, src.total());
CV_Error(CV_StsBadArg, error_message);
}
// project into LDA subspace
Mat q = subspaceProject(_eigenvectors, _mean, src.reshape(1,1));
// find 1-nearest neighbor
minDist = DBL_MAX;
minClass = -1;
for(size_t sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {
double dist = norm(_projections[sampleIdx], q, NORM_L2);
if((dist < minDist) && (dist < _threshold)) {
minDist = dist;
minClass = _labels.at<int>((int)sampleIdx);
}
}
}
int Fisherfaces::predict(InputArray _src) const {
int label;
double dummy;
predict(_src, label, dummy);
return label;
}
// See FaceRecognizer::load.
void Fisherfaces::load(const FileStorage& fs) {
//read matrices
fs["num_components"] >> _num_components;
fs["mean"] >> _mean;
fs["eigenvalues"] >> _eigenvalues;
fs["eigenvectors"] >> _eigenvectors;
// read sequences
readFileNodeList(fs["projections"], _projections);
fs["labels"] >> _labels;
}
// See FaceRecognizer::save.
void Fisherfaces::save(FileStorage& fs) const {
// write matrices
fs << "num_components" << _num_components;
fs << "mean" << _mean;
fs << "eigenvalues" << _eigenvalues;
fs << "eigenvectors" << _eigenvectors;
// write sequences
writeFileNodeList(fs, "projections", _projections);
fs << "labels" << _labels;
}
//------------------------------------------------------------------------------
// LBPH
//------------------------------------------------------------------------------
template <typename _Tp> static
void olbp_(InputArray _src, OutputArray _dst) {
// get matrices
Mat src = _src.getMat();
// allocate memory for result
_dst.create(src.rows-2, src.cols-2, CV_8UC1);
Mat dst = _dst.getMat();
// zero the result matrix
dst.setTo(0);
// calculate patterns
for(int i=1;i<src.rows-1;i++) {
for(int j=1;j<src.cols-1;j++) {
_Tp center = src.at<_Tp>(i,j);
unsigned char code = 0;
code |= (src.at<_Tp>(i-1,j-1) >= center) << 7;
code |= (src.at<_Tp>(i-1,j) >= center) << 6;
code |= (src.at<_Tp>(i-1,j+1) >= center) << 5;
code |= (src.at<_Tp>(i,j+1) >= center) << 4;
code |= (src.at<_Tp>(i+1,j+1) >= center) << 3;
code |= (src.at<_Tp>(i+1,j) >= center) << 2;
code |= (src.at<_Tp>(i+1,j-1) >= center) << 1;
code |= (src.at<_Tp>(i,j-1) >= center) << 0;
dst.at<unsigned char>(i-1,j-1) = code;
}
}
}
//------------------------------------------------------------------------------
// cv::elbp
//------------------------------------------------------------------------------
template <typename _Tp> static
inline void elbp_(InputArray _src, OutputArray _dst, int radius, int neighbors) {
//get matrices
Mat src = _src.getMat();
// allocate memory for result
_dst.create(src.rows-2*radius, src.cols-2*radius, CV_32SC1);
Mat dst = _dst.getMat();
// zero
dst.setTo(0);
for(int n=0; n<neighbors; n++) {
// sample points
float x = static_cast<float>(-radius * sin(2.0*CV_PI*n/static_cast<float>(neighbors)));
float y = static_cast<float>(radius * cos(2.0*CV_PI*n/static_cast<float>(neighbors)));
// relative indices
int fx = static_cast<int>(floor(x));
int fy = static_cast<int>(floor(y));
int cx = static_cast<int>(ceil(x));
int cy = static_cast<int>(ceil(y));
// fractional part
float ty = y - fy;
float tx = x - fx;
// set interpolation weights
float w1 = (1 - tx) * (1 - ty);
float w2 = tx * (1 - ty);
float w3 = (1 - tx) * ty;
float w4 = tx * ty;
// iterate through your data
for(int i=radius; i < src.rows-radius;i++) {
for(int j=radius;j < src.cols-radius;j++) {
// calculate interpolated value
float t = static_cast<float>(w1*src.at<_Tp>(i+fy,j+fx) + w2*src.at<_Tp>(i+fy,j+cx) + w3*src.at<_Tp>(i+cy,j+fx) + w4*src.at<_Tp>(i+cy,j+cx));
// floating point precision, so check some machine-dependent epsilon
dst.at<int>(i-radius,j-radius) += ((t > src.at<_Tp>(i,j)) || (std::abs(t-src.at<_Tp>(i,j)) < std::numeric_limits<float>::epsilon())) << n;
}
}
}
}
static void elbp(InputArray src, OutputArray dst, int radius, int neighbors)
{
switch (src.type()) {
case CV_8SC1: elbp_<char>(src,dst, radius, neighbors); break;
case CV_8UC1: elbp_<unsigned char>(src, dst, radius, neighbors); break;
case CV_16SC1: elbp_<short>(src,dst, radius, neighbors); break;
case CV_16UC1: elbp_<unsigned short>(src,dst, radius, neighbors); break;
case CV_32SC1: elbp_<int>(src,dst, radius, neighbors); break;
case CV_32FC1: elbp_<float>(src,dst, radius, neighbors); break;
case CV_64FC1: elbp_<double>(src,dst, radius, neighbors); break;
default: break;
}
}
static Mat
histc_(const Mat& src, int minVal=0, int maxVal=255, bool normed=false)
{
Mat result;
// Establish the number of bins.
int histSize = maxVal-minVal+1;
// Set the ranges.
float range[] = { static_cast<float>(minVal), static_cast<float>(maxVal+1) };
const float* histRange = { range };
// calc histogram
calcHist(&src, 1, 0, Mat(), result, 1, &histSize, &histRange, true, false);
// normalize
if(normed) {
result /= (int)src.total();
}
return result.reshape(1,1);
}
static Mat histc(InputArray _src, int minVal, int maxVal, bool normed)
{
Mat src = _src.getMat();
switch (src.type()) {
case CV_8SC1:
return histc_(Mat_<float>(src), minVal, maxVal, normed);
break;
case CV_8UC1:
return histc_(src, minVal, maxVal, normed);
break;
case CV_16SC1:
return histc_(Mat_<float>(src), minVal, maxVal, normed);
break;
case CV_16UC1:
return histc_(src, minVal, maxVal, normed);
break;
case CV_32SC1:
return histc_(Mat_<float>(src), minVal, maxVal, normed);
break;
case CV_32FC1:
return histc_(src, minVal, maxVal, normed);
break;
default:
CV_Error(CV_StsUnmatchedFormats, "This type is not implemented yet."); break;
}
return Mat();
}
static Mat spatial_histogram(InputArray _src, int numPatterns,
int grid_x, int grid_y, bool /*normed*/)
{
Mat src = _src.getMat();
// calculate LBP patch size
int width = src.cols/grid_x;
int height = src.rows/grid_y;
// allocate memory for the spatial histogram
Mat result = Mat::zeros(grid_x * grid_y, numPatterns, CV_32FC1);
// return matrix with zeros if no data was given
if(src.empty())
return result.reshape(1,1);
// initial result_row
int resultRowIdx = 0;
// iterate through grid
for(int i = 0; i < grid_y; i++) {
for(int j = 0; j < grid_x; j++) {
Mat src_cell = Mat(src, Range(i*height,(i+1)*height), Range(j*width,(j+1)*width));
Mat cell_hist = histc(src_cell, 0, (numPatterns-1), true);
// copy to the result matrix
Mat result_row = result.row(resultRowIdx);
cell_hist.reshape(1,1).convertTo(result_row, CV_32FC1);
// increase row count in result matrix
resultRowIdx++;
}
}
// return result as reshaped feature vector
return result.reshape(1,1);
}
//------------------------------------------------------------------------------
// wrapper to cv::elbp (extended local binary patterns)
//------------------------------------------------------------------------------
static Mat elbp(InputArray src, int radius, int neighbors) {
Mat dst;
elbp(src, dst, radius, neighbors);
return dst;
}
void LBPH::load(const FileStorage& fs) {
fs["radius"] >> _radius;
fs["neighbors"] >> _neighbors;
fs["grid_x"] >> _grid_x;
fs["grid_y"] >> _grid_y;
//read matrices
readFileNodeList(fs["histograms"], _histograms);
fs["labels"] >> _labels;
}
// See FaceRecognizer::save.
void LBPH::save(FileStorage& fs) const {
fs << "radius" << _radius;
fs << "neighbors" << _neighbors;
fs << "grid_x" << _grid_x;
fs << "grid_y" << _grid_y;
// write matrices
writeFileNodeList(fs, "histograms", _histograms);
fs << "labels" << _labels;
}
void LBPH::train(InputArray _src, InputArray _lbls) {
if(_src.kind() != _InputArray::STD_VECTOR_MAT && _src.kind() != _InputArray::STD_VECTOR_VECTOR) {
string error_message = "The images are expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< vector<...> >).";
CV_Error(CV_StsBadArg, error_message);
}
if(_src.total() == 0) {
string error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
CV_Error(CV_StsUnsupportedFormat, error_message);
} else if(_lbls.getMat().type() != CV_32SC1) {
string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _lbls.type());
CV_Error(CV_StsUnsupportedFormat, error_message);
}
// get the vector of matrices
vector<Mat> src;
_src.getMatVector(src);
// get the label matrix
Mat labels = _lbls.getMat();
// check if data is well- aligned
if(labels.total() != src.size()) {
string error_message = format("The number of samples (src) must equal the number of labels (labels). Was len(samples)=%d, len(labels)=%d.", src.size(), _labels.total());
CV_Error(CV_StsBadArg, error_message);
}
// append labels to _labels matrix
for(size_t labelIdx = 0; labelIdx < labels.total(); labelIdx++) {
_labels.push_back(labels.at<int>((int)labelIdx));
}
// store the spatial histograms of the original data
for(size_t sampleIdx = 0; sampleIdx < src.size(); sampleIdx++) {
// calculate lbp image
Mat lbp_image = elbp(src[sampleIdx], _radius, _neighbors);
// get spatial histogram from this lbp image
Mat p = spatial_histogram(
lbp_image, /* lbp_image */
static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors))), /* number of possible patterns */
_grid_x, /* grid size x */
_grid_y, /* grid size y */
true);
// add to templates
_histograms.push_back(p);
}
}
void LBPH::predict(InputArray _src, int &minClass, double &minDist) const {
if(_histograms.empty()) {
// throw error if no data (or simply return -1?)
string error_message = "This LBPH model is not computed yet. Did you call the train method?";
CV_Error(CV_StsBadArg, error_message);
}
Mat src = _src.getMat();
// get the spatial histogram from input image
Mat lbp_image = elbp(src, _radius, _neighbors);
Mat query = spatial_histogram(
lbp_image, /* lbp_image */
static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors))), /* number of possible patterns */
_grid_x, /* grid size x */
_grid_y, /* grid size y */
true /* normed histograms */);
// find 1-nearest neighbor
minDist = DBL_MAX;
minClass = -1;
for(size_t sampleIdx = 0; sampleIdx < _histograms.size(); sampleIdx++) {
double dist = compareHist(_histograms[sampleIdx], query, CV_COMP_CHISQR);
if((dist < minDist) && (dist < _threshold)) {
minDist = dist;
minClass = _labels.at<int>((int) sampleIdx);
}
}
}
int LBPH::predict(InputArray _src) const {
int label;
double dummy;
predict(_src, label, dummy);
return label;
}
Ptr<FaceRecognizer> createEigenFaceRecognizer(int num_components, double threshold)
{
return new Eigenfaces(num_components, threshold);
}
Ptr<FaceRecognizer> createFisherFaceRecognizer(int num_components, double threshold)
{
return new Fisherfaces(num_components, threshold);
}
Ptr<FaceRecognizer> createLBPHFaceRecognizer(int radius, int neighbors,
int grid_x, int grid_y, double threshold)
{
return new LBPH(radius, neighbors, grid_x, grid_y, threshold);
}
CV_INIT_ALGORITHM(Eigenfaces, "FaceRecognizer.Eigenfaces",
obj.info()->addParam(obj, "ncomponents", obj._num_components);
obj.info()->addParam(obj, "threshold", obj._threshold);
obj.info()->addParam(obj, "projections", obj._projections, true);
obj.info()->addParam(obj, "labels", obj._labels, true);
obj.info()->addParam(obj, "eigenvectors", obj._eigenvectors, true);
obj.info()->addParam(obj, "eigenvalues", obj._eigenvalues, true);
obj.info()->addParam(obj, "mean", obj._mean, true));
CV_INIT_ALGORITHM(Fisherfaces, "FaceRecognizer.Fisherfaces",
obj.info()->addParam(obj, "ncomponents", obj._num_components);
obj.info()->addParam(obj, "threshold", obj._threshold);
obj.info()->addParam(obj, "projections", obj._projections, true);
obj.info()->addParam(obj, "labels", obj._labels, true);
obj.info()->addParam(obj, "eigenvectors", obj._eigenvectors, true);
obj.info()->addParam(obj, "eigenvalues", obj._eigenvalues, true);
obj.info()->addParam(obj, "mean", obj._mean, true));
CV_INIT_ALGORITHM(LBPH, "FaceRecognizer.LBPH",
obj.info()->addParam(obj, "radius", obj._radius);
obj.info()->addParam(obj, "neighbors", obj._neighbors);
obj.info()->addParam(obj, "grid_x", obj._grid_x);
obj.info()->addParam(obj, "grid_y", obj._grid_y);
obj.info()->addParam(obj, "threshold", obj._threshold);
obj.info()->addParam(obj, "histograms", obj._histograms, true);
obj.info()->addParam(obj, "labels", obj._labels, true));
bool initModule_contrib()
{
Ptr<Algorithm> efaces = createEigenfaces(), ffaces = createFisherfaces(), lbph = createLBPH();
return efaces->info() != 0 && ffaces->info() != 0 && lbph->info() != 0;
}
}